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Abstract

In this paper we show how secondary images superimposed on a primary dynamic im-
age sequence can be separated to yield both primary and secondary images explicitly and
distinctly. The problem is solved by analysing the Fourier spectrum of the additive im-
ages and by decoupling each spatial frequency component (which represents the composite
image) into two distinct Fourier components, one for the primary image and one for the
secondary reflected image. Specifically, we show how the individual frequency components
which are associated with each moving object (or, rather, each set of objects moving with
distinct constant velocity) can be computed from the single compound frequency magnitude
and phase. Since the primary image and the second image exhibit different velocities, the
decoupled components can then be sorted into the two sets (primary and secondary) on the
basis of their phase change. This sorting is effected using a Hough transform. The original,
separated, images are reconstructed using the inverse Fourier transform.

1 Introduction

In this paper, we are interested in 2-D functions which are the result of the superposition
(addition) of two images: v(z.y) = v!(z.y)+ v?(2.y). Note, however, that a given component
spatial frequency is likelv to be present in both component images, even though each image m

av have a different velocity (¢! Unfortunately. in the Fourier domain there is only one
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unique coefficient F(k;. k) = F(uv{r.y)) for each component ¢~ ilkzz+ky¥) rather than multiple
distinct coeflicients F'(k,.k,) for each component image ¢*'. In the following section we will
show that it is possible to decouple each Fourier component and to determine each F'(k,.k,)

from F(kz, ky) and we will identifv the circumstances under which it is possible.

2 Decoupling Fourier Components

Ve note first that the conflated coefficient. i.¢. the resultant Fourier component, is the sum of the
Fourier components of each additive image: F(v) = F (L0, ) = T2, F(¢'). Equivalently.
Flhe,hy) = 2002, Fiitko k). for any given Fourier component k. The Fourier component F(k. k)
is the vector sum of each Fi(k,. k,) and its resultant magnitude and phase will be dependent on
the magnitudes and phases of the individual components Fi(k,. ky). Thus, for a given component.
the Fourier transform only provides F(k,.k,). the composite coefficient, rather than what is
required, t.e.. the coeflicient corresponding to cach image v*'. However, each F"(lfr,ky). can be
determined from F(k,. k).

Consider a 2-D function v(x — v,8t,y — v,é1). which is ¥(z, y) shifted by (v.6t,v,6t), i.e.. it
is travelling with constant velocity (v, v,). The shift property of the Fourier transform states
that the Fourier transform of any such shifted function is given by:

Flo{o —veltoy — v,61)) = [F(hp. k)| @k k) gmilhsvabtakyv,bt)
]_‘ ( t'(.T, y))e—i(/:;lf;&i—{v}:y';yét)
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That is a spatial shift of a signal only produces a frequency-dependent phase change in the
Fourier domain. The consequence of this is that the components of ¥ translating with uniform
velocity only undergo a phase change, with no change in magnitude; that is. the vector F* (ke ky)
is only rotated by an angle given by the phase change —i(k,v L6t + kyv ét). Thus, the Fourier
components at time t,, are related to those at time ¢y as follows.

Fi(keky) = Fio(ha k) (emi(heutbtrhgén)™ (1)

Also,
Fe, (k2 Ay)_ZF‘ (kzyky) (2)

where m is the number of individual images.

Rewriting equations 1 and 2, dropplncr the (kg ky) for the sake of brevity while remembering
that we are dealing with complex values defined on a 2-D domain, and letting ¢ ~H(Asvzétthyrydt) —
A®' a complex variable representing the frequency- and velocity-dependent phase chance we
have:

Fi, = Fi,A0™ (3)

-3°F, @
1=1
Combining 3 and 4, we have

Fio=3 Fi, A9" (5)
=1

If we have 7 = m distinct objects. then we have 2m complex unknowns (i.e. Fj, and A®") and
consequently we can solve for these 2m unknowns if we have 2m constraints. These constraints
are derived from equation 5 by making j = 2m observations for Fi,. That is. for a given spatial
frequency (k;,ky), we observe from the Fourier transform Fi, at tlme to,T1.. ... Lo lom and
solve these 2m simultaneous equations of degree 2m ~ 1 in complex unknowns F;o and A®*,

Thus, we now have the decoupled Fourier transform components of each image and. further-
more, we have the phase change for each component of each object. Unfortunately. since we
assigned the components arbitrarily, we do not (yet) know which component belongs to which
image and we must now group them appropriately. That is, we have two sets of phase changes
{A®4} and {A®®} and two corresponding sets of Fourier components {F4} and {FB} and we
need to sort the elements of each set in to two new sets {F'} and {F?} corresponding to the
two distinct images. To do this. we use our knowledge that there is a regularity in the temporal
phase change as a function of frequency (k;,k,). Specifically, we have:

Ad (k. ]‘L) — E—i(z'1k15t+1ryky§t)
= gifolkn ky)
For a given imagee i, (vl. z*;) is constant. Thus a given object ¢ will exhibit a phase change
bO(ky. ky): ' _
bolkr ky) = —(vyh 61 + v kybt) (6)

which will differ for each image . Since we require (vi # (vi,v ) # 7, in order to sort the
components of the two images we simply need to Jdentlf_\ the two velocmes (vl v y) and (v2, 1‘5)
which will, in turn, allow us to identify the corresponding expected phase change for images 1
and 2, respectively. Let these expected phase changes be denoted 6! (ky, k,) and 862 (kz, ky),
respectively. Then we assign a component FA(k,, k,) to image 1, i.e. we include it in {Fl} if
Jé@e — 6o ’ < lﬁo ~ 6o l otherwise we assign it to {F?}: FB(AI,k ) is assigned to the other
image.
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It only remains, then, to identify the two velocities (v1,v}) and (¢2, rZ). We do this using a

y
Hough transform. From equation 6 we have:

-1
—

vy = — (6(kg ky) — krve6t) (

This equation represents a Hough transform in the two variables (v,.1,) which we solve for all
6¢(kesky), kzy by, and vz. Note that é6(kz, ky) = arctan(SA®(kr. ky), RAD(A Ky)). Local
maxima in this Hough transform space represent the velocities which are exhibited by the
frequency components. In this case, there are two velocity maxima, one corresponding to image
1 and the other to image 2. The location of these maxima give us (v1,v}) and (¢Z,v2) and. thus.
we can proceed to sort the components.

Note that the Hough transform equation 7 becomes degenerate if k, = 0 in which case we
use an alternative re-arrangement as follows:

o - (6(ks k) (
¥ ko6t

0

2.1 Limitations on the solution set of spatial frequencies

There are some practical limitations on this solution which relate to the velocities of the moving
waves and their spatial frequencies. Specifically, there are limitations on the range of spatial
frequencies for which the equations are valid and these limitations depend on the velocities of
the moving images. We note here that this leads to the following constraint (for a proof of this.
see [18]):

2%

3 ]L.ma:cl

ke + ky| < (9)
where v"%% = ¢%% = ¢™%% and is the maximum velocity in either image. In effect, we can only
solve for (or decouple) those spatial frequencies satisfving equation 9.

3 Results

Figures 1 and 2 demonstrate the application of the approach. Two images are moving indepen-
dently of one another with velocities (vg,,%y,) and (vy,, vy, ). respectively. The technique was
tested for velocities in the ranges: (0,0) < (vz,,7y) < (0,5) and (0.0) < (vr,,vy,) < (5.5).
in increments of one pixel. Figures 1 and 2 depict each individual image at time 1p, the sum
of both images at times ?g and 3. the result of computing (segmenting) the composite images
based on the sequence at time tg.7;.12, and 13, and the absolute value of the difference between
the segmented images and the original images (scaled by a factor of 10), respectively.

Table 1 shows the RMS errors between the segmented image and the original image for all
combinations of image velocities (in the range specified above).

4 Conclusions

The principal contribution of this paper is to show how the resultant Fourier component of a 2-D
image comprising several additive signals, i.e. several distinct intensity waveforms, each trans-
lating (or shifting) with a distinct velocity can be resolved, or decoupled, into their respective
components, with each resolved component corresponding to the distinct waveform or signal.
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RMS Error: Image 1 (velocity = (vz,, vy, )) -RMS Error: Image 2 (velocity = (vz,.1y,))
(vzy,v9,) | vz, Ty, vz, ys
o] 1 2 3 4 5 0 1 2 3 4 5
0 39.8 | 16.2 | 10.2 | 11.3 | 12.3 | 13.0 0 | 50.5 ] 25.2 ) 19.8 | 19.4 | 17.5 | 17.5
1 49.6 | 263 | 44.8 | 43.3 | 43.6 | 45.9 1 67.0 | 30.2 | 52.1 55.0 | 57.2 | 59.4
(1, 0) 2 27.9 | 159 7.2 13.3 | 10.2 | 12.7 2 49.1 | 25.0 | 17.0 | 183 | 17.0 | 19.1
3 30.0 8.1 15.7 | 42.6 | 38.6 | 41.0 3 44.2 | 16.8 [ 24.2 | 50.8 | 48.53 | 52.3
4 33.3 7.0 8.5 20.2 | 13.6 | 40.1 4 439 | 189 | 16.9 | 24.5 | 18.8 | 49.9
5 25.6 7 13.3 | 12.8 | 39.3 | 41.5 5 43.7 {1 19.0 | 17.9 | 1897} 45.5 | 47.3
0 354 7.9 10.8 8.1 10.3 | 10.9 0 48.6 | 18.7 | 18.5 | 16.5 | 16.6 | 16.9
1 39.5 | 14.0 9.5 29.9 | 30.9 | 30.0 1 50.6.1 234 | 184 | 38.4 | 37.4 7.2
(2, 0) 2 45.4 | 20.1 | 20.8 | 21.8 | 22.8 | 224 2 85.6 | 30.1 | 31.3 | 31.7 | 31.1 31.5
3 35.5 | 186 ] 15.3 | 10.9 | 38.3 | 37.8 3 47.1 25.7 | 25.5 | 163 | 45.2 | 46.8
4 29.1 9.1 18.6 | 10.7 | 12.3 | 14.1 4 44.9 | 171 24.6 | 18.1 19.5 | 19.1
5 33.2 1101 | 10.5 | 20.9 | 14.2 | 42.3 5 43.3 | 18.7 | 183 | 27.0 | 19.9 | 44.5
0 35.5 | 13.3 9.4 28.1 11.8 | 11.8 0 47.0 | 193 | 176 | 28.0 | 16,9 | 16.8
1 354 | 10.8 | 11.4 | 35.1 | 40.9 | 40.6 1 47.0 | 19.1 200 | 426 | 47.5 | 49.4
(3, 0) 2 32.0 | 25.¥ | 10.4 | 10.5 | 12.7 | 13.5 2 50.7 | 29.7 | 20.5 17.4 | 184 17.5
3 51.8 | 285 | 233 | 449 | 43.3 | 434 3 59.5 | 31.2 | 29.8 | 56.2 | 56.1 55.1
4 36.0 | 15.4 9.9 14.8 | 12.5 14.6 4 48.0 22.9 17.4 18.5 18.8 19.5
5 27.9 8.9 16.8 | 13.4 | 42.8 42.7 5 44.8 18.1 23.3 19.8 | 46.3 | 47.6
0 36.4 7.5 121 | 106 | 13.7 | 12.8 0 478 | 16.7 | 186 | 16.7 | 19.5 | 17.1
1 37.0 | 10.4 | 11.4 | 28,5 | 28.7 | 29.4 1 476 | 189 | 19.7 | 33.0 | 36.8 | 35.3
(4, 0) 2 36.1 103 | 16.2 | 11.0 | 11.1 12.5 2 47.5 18.3 23.5 174 171 17.1
3 33.8 | 12.8 ] 124 | 13.9 | 30.1 29.9 3 49.0 | 24.3 | 19.1 19.9 | 39.8 | 37.8
4 46.0 | 214 | 21.3 | 22.2 | 22.5 | 24.3 4 77.7 1 291 29.6 | 30.0 | 29.4 | 30.2
5 36.9 | 19.2 | 15.7 | 12.8 | 15.3 | 38.4 5 47.8 | 26.0 | 25.1 17.9 | 19.6 | 44.8
0 36.2 8.7 9.8 11.2 | 13.3 | 21.3 0 47.7 | 18.2 | 17.9 | 17.4 | 18.1 23.2
1 36.2 | 10.6 | 13.1 | 37.5 | 39.4 | 40.4 1 47.7 | 18.2 | 20.5 | 48.8 | 48.5 | 46.8
(5,0) 2 36.2 1 11.2 | 11.7 | 27.0 | 12.6 | 14.2 2 47.7 | 19.6 | 19.3 | 30.1 18.7 | 18.3
3 36.2 | 14.4 | 18.0 | 12.5 | 40.9 | 44.0 3 47.7 | 22.3 | 27.8 | 19.9 | 48.6 | 48.3
4 31.8 | 186 | 12.7 | 14.1 13.6 16.7 4 51.4 29.3 | 20.5 21.1 18.9 19.3
5 44.1 | 280§ 23.7 { 23.0 | 23.7 | 44.9 5 66.0 | 32.6 | 30.3 | 31.1 | 30.1 56.3 |

Table 1: RMS error for additive child and gull images; image 1 (child) velocity = (v, ty,)
pixels, image 2 (gull) velocity = (vs,. vy, ) pixels.
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Figure 1: Segmentation iest scenario 1: {a) and (b) images 1 and 2 translating with velocities
(0. 1) and (1. 1) pixels. respectivelv: (¢) and (d) sum of images 1 and 2 at time {9 and 13.
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araund (b) the result of computing (segmenting) the

Figure 2: Segmentation test scenario 1: |
composite images ba-nd on ihe sequence at tUmes fy. 1. 15, and 13: {¢) and (d) the absolute value

of the difference betvween the seemented images and the original imaees (scaled by a factor of

10).
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