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Abstract

We present an alternative to traditional feature-matching approaches to the measurement
of stereo disparity. Here, the disparity is computed by first registering the two images using
an algorithm which combines both intensity and gradient information and then by estimating
the relative local image shift using the phase of the Fourier components of local 64 x 64 pixel
windows In each stereo image.

The window disparity is measured by exploiting the shift property of the Fourier trans-
form. The Fourier components which exhibit phase changes which are consistent with a given
shift are detected using a custom Hough transform. Results are presented for benchmark
image data produced by the computer vision group in Carnegie Mellon University.

1 Introduction

Traditional approaches to the measurement of stereo disparity in images normally exploit one
of two primary techniques (i) those which attempt to identify the left-to-right stereo image
correspondence by matching regions and sub-regions in the image using, e.g. correlation tech-
niques, and (ii) those which exploit feature-based matching using, e.g. edge-correspondence.
(1, 2]. Typically, epipolar and smoothness constraints are used to reduce the complexity of the
matching process and, normally, both matching procedures are carried out in the space domain.

In this paper, we present an alternative region-based approach which operates in the spa-
tial frequency domain and not the spatial domain, exploiting the shift property of the Fourier
transform to detect and measure image translation [3, 4, 5, 6, 7, 8, 9]. This approach comprises
two distinct steps. First, the two stereo images are registered and, second, the image shift in
each 64 x 64 pixel window centred at position (¢,7) in the left and right images are computed
by identifying the spatial-frequency dependent phase shifts which are consistent with a unique
shift. The latter step is effected using a custom Hough transform to be described below.

The two major advantages of this technique are that, because the analysis takes place in the
Fourier domain, the spatial organization and the visual appearance of the moving object is not
significant and, secondly, the formulation presented in this paper lends itself to generalization
so that more complex circumstances (e.g. occlusion) can be addressed. Consequently, objects
which are visually or spatially complex and which would be difficult to analyse using either of
the traditional approaches can be effectively treated.

2 Theoretical Basis of the Approach

2.1 Image Registration andn Computation of Global Disparity

No two stereo image pairs are exactly alike. Nonetheless, they are approximately similar and
this similarity makes it possible to register the two images, effectively computing the gross, or
global, disparity between the two images. Once this is done, the point-by-point deviations from
this global disparity can be identified. The two stereo images are registered by translating and
amplitude shifting one with respect to the other, and evaluating a similarity measure d at each
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shift where d is defined in terms of both the image data and the gradient of the left image as
follows:

d = \/S(L(, )~ (R(5,5) + )" * w)
where w is a weighting factor which apportions relative emphasis of points as a function of their
gradient value:
k+VL(i,j)
vmarL(ia j)
k is a user-specified percentage which specifies the relative weighting. The offset ¢ is used to
normalise the amplitude of the right image R(4,j) with respect to the left image L(7,7) based
on the difference of their average values. The registered image is the right image translated and
amplitude-shifted by the values which minimise the difference measure d.

w=1-k+

2.2 Computation of Local Disparity

Once the left and right images are registered, the displacements (or disparities) of all 64x64 pixel
windows in the left image (with respect to the right image) are then computed. The window
disparity is measured by exploiting the shift property of the Fourier transform, i.e. a shift in
a signal only introduces a phase change in the Fourier components. Consequently, the Fourier
transforms of the corresponding windows in the left and right images are computed and then -
the Fourier components which exhibit phase changes which are consistent with a given shift
are detected. This detection is accomplished using a custom Hough transform which defines
the possible z and y displacements as a function of the phase change of each spatial frequency
component. The displacement with the greatest amount of evidence in the Hough space is taken
to be the stereo disparity of that window and is computed to sub-pixel accuracy.
Specifically, the Fourier transform of an image f(z,y) shifted by (6z,8y) is given by [10]:

F(f(a = 82,y = 89)) = [F(hs, by)] e/ ) emetmriatt)

Thus, a spatial shift of (éz,8y) of an image in the spatial domain, i.e. f(z,y) shifted to f(z —
§z,y — 6y), only produces a change in the phase of the Fourier components in the frequency
domain. This phase change is ¢—i(kz8z+ky6¥)  Thys, in order to identify the spatial shift of a
given image, we simply need to identify the set of frequency components k and &, which have
all been modified by the same phase shift, z.e. e~ ikzb6+ky8Y) Ty accomplish this, we note that
the phase spectrum for the shifted image (¢.e. the left image) is equal to the phase spectrum
of the right image multiplied by the phase change given above:

iossclkeky) _ gmilkabzbhy8y) gidr (ke ky)
ei(d)r(kz,ky)—(krér—i—ky&y))

€

I

Hence:
dilkziky) = dr(keiky) — (kobz + kyby)

That is, the phase of the left image is equal to the phase of the right image minus (k 6z 4 ky6y).
Since we require éz and &y, we rearrange as follows:

1, , .
by = 'A_y“ (&r(kzy ky) — Dk, ky) — ksbz) (1)
This equation becomes degenerate if ky, = 0 in which case we use an alternative re-arrangement
as follows: . (B ok
S = (Or( 3 y)k_ ¢1( T y)) (2)

Treating the equation above as a Hough transform, with a 2-D Hough transform space defined
on dxz, 8y, then we can compute &y for all possible values of éz, and for all (known) values of
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kryky, ¢:(kz, ky), é1(kz, ky). Local maxima in this §z,8y Hough transform space occur at the
maximally-likely image shift, i.e. the local stereo disparity can be computed by identifying the
position of the maximum in the Hough space.

Note that, in both equations (1) and (2), ¢(k., k,) represents the absolute phase of frequency
(kz,ky). However, in the Fourier domain, phase is bounded by +27 and phase values will
‘wrap’ as they cross this threshold. In effect, phase values are represented modulo 27. In this
implementation, we have allowed for this by solving (1) and (2) for the given phase values
P(ks, ky) + 2n7, 6 > 0;8(kz, ky) — 2n7,¢ < 0, for all = such that 2n7 <| kyvg, .6t | + |
kyymaz 6t |-

3 Results

Figures 1(a)through 1(d) demonstrate the results of applying the technique to a stereo image
taken from the Carnegie Mellon University stereo database [11]. Figures 1(a) and 1(b) show the
left and right images, respectively. Figure 1(c) shows the computed local stereo disparity vector
field computed every ten pixels superimposed on the left-image and figure 1(d) shows the full
stereo disparity image which was computed by bi-linear interpolation between each local stereo
estimate.

4 Discussion

The model used in the approach presented in this paper assumes that the image in any window
in the left image is simply a shifted version of the image in the corresponding window in the right
image (and, hence, that there is only a phase difference between the Fourier components of the
left and right images, respectively). Whilst this is usually a good approximation, is it invalid if
there is a significant distortion in the left and right windows due e.g. to the presence of occluding
boundaries in the image scene. Consequently, there may be significant changes in the spatial
frequency magnitude in the window as well as the expected phase change. The solution of this
problem necessitates a generalization of the spatial translation model upon which the approach
is founded to embrace not just the phase-shift related rotation of each spatial frequency vector
(or phasor) as it stands at present but also to embrace the variation in the magnitude of the
phasor. Work is proceeding on this generalization and early theoretical and empirical results
are.encouraging.
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Figure 1: (a) Left (b) and right stereo images taken from the Carnegie Mellon University stereo
database (c) Computed stereo disparity vector field (d) Stereo disparity map computed by bi-
linear interpolation of the magnitude of the stereo disparity vector field.
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