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Abstract. The yield of the CMOS or CCD fabrication processes typically
places a upper-bound on the resolution with which sensors can be cost-
effectively manufactured. In this paper, we present an innovative approach
which directly addresses this difficulty by adopting a non-uniform photosite
geometry. In particular, we present a technique to reconstruct a high-resolution
image by combining two lower-resolution and  images which exhibit
asymmetric photosite aspect ratios and asymmetric sampling density. This
has been done for two configurations of the sensor geometry, one where the
photosite centroids are co-linear in both directions and another where the
photosite centroids are co-linear in the direction of greater sampling density
(i.e. along the sensor columns) but where the origin of each column is offset
(staggered) by half the column inter-photosite distance. The technique invokes
assumptions of local smoothness to provide the additional constraints required
to compute the high-resolution pixel values. Good qualitative and quantitative
results have been achieved with a 23% improvement in the root of mean square
(RMS) error over a simple reconstruction-based on local averaging.
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1 Introduction

The need for increased accuracy in visual inspection and metrology, particularly in
the manufacture of printed circuit boards, makes the fabrication of high-resolution 2-
D image sensors very desirable. However, significantly-increased resolution presents
two principal difficulties.

The first difficulty concerns the quadratic growth in the amount of image data
generated as resolution is generated. This in turn places a sometimes unsustainable
load on image acquisition, processing, and analysis sub-systems. The normal solution
to this problem is to increase both the communication bandwidth between these sub-
system and the processing power of the system responsible for the interpretation of
the image data [1]. Alternative approaches has also been developed that adopt a
strategy of increased efficiency, rather than increased power, relying on the
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construction of sensors whose photosites or pixels are randomly addressable and
relying on the development of processing and analysis algorithms which can exploit
this random access feature to effect efficient image interpretation [1-7]. This
alternative strategy is particularly attractive when one considers the strict time and
resolution constraints imposed by the use of standard video interfaces, such as CCIR
and NTSC. Specifically, these standards impose a lower limit on the time which must
elapse between the acquisition of each image (40 ms in the case of CCIR) and an
upper limit on the effective resolution of the image (576 lines in the case of CCIR).

The second difficulty concerns the yield of the CMOS or CCD fabrication process
and the consequent ability to produce image sensors which are free of flaws (or, more
usually, sensors with an acceptable number of isolated flaws). As the resolution, and
the number of pixels, of the sensor increases, the effective yield drops significantly.
Typically, this has presented a substantive barrier to the production of cost-effective
high-resolution sensors.

In this paper, we present an innovative approach which directly addresses the
second of the above two difficulties (i.e. reduced yield) by adopting a non-uniform
photosite geometry. The approach also facilitates very efficient solutions to the first
difficulty caused by increased size of the data sets through the use of random access
strategies. However, we will concentrate on the latter problem in this paper.

2 The Design the RAMAP Sensor

Our sensor design criteria are to produce a sensor geometry which can provide:

(a) the highest possible sensor resolution for application specific problems

(b) the highest possible fabrication yield

(c) the lowest cost

(d) and, significantly, the highest possible sensor resolution for general purpose
vision tasks.

These criteria are set out in order of importance. In this instance, the application
specific problems require highly-accurate localization of image features in two
orthogonal directions. Consequently, it is necessary for the sensor to have a high
sampling density in one direction only, assuming one can deploy two sensors to effect
the localization. This means that one can exploit a sensor with asymmetric sampling
densities (i.e. higher in one direction than another) and consequently reduce the
humber of photosites, in turn increasing the possible yield and reducing the overall
cost. For example, see figure 1. However, such a strategy can pose some difficulties
Wwith criterion (d) above which is concerned with general-purpose visual analysis.
This criterion requires the highest possible resolution in all directions, necessitating a
Symmetric and high sampling density. In this paper, we show how one can combine
the images generated from two asymmetric sensors to reconstruct an image with high
Tesolution and we do this for two configurations of the sensor geometry, one where
the photosite centroids are co-linear in both directions (see figure 1.a) and another
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where the photosite centroids are co-linear in the direction of greater sampling density
(i.e. along the sensor columns) but the origin of each column is offset (staggered) by
half the column inter-photosite distance (see figure 1.b).

The resolution of the RAMAP sensor is 600x1800 photosites in both cases.

3 Reconstruction

The goal of the work described in this paper is to combine two images derived from
either of the sensor configurations shown in figure 1 with another equivalent sensor
rotated by ninety degrees with respect to the other. Since the aspect ratio of the
photosites is 3:1 and the distribution of photosites across the sensor surface is in the

ratio of 1:3 per unit distance, this means that a sensor of 3 X7 pixels has an

effective 1:1 aspect ratio. Consequently, it is possible to superimpose two images
(§Xnand nX 4) derived from orthogonally-oriented sensors. Thus, we wish to

combine a 3 X7 image and a 1 X % image to yield a 7 X7 image which exhibits

an effective resolution greater than one would generate from simply superimposing
and averaging the two images.

Clearly, there are two cases to consider here: (a) the combmatlon of the co-linearly
arranged (unstaggered) photosites sensor images and (b) the combination of the
staggered photosite sensor images. We will treat each of these in turn.

4 Combination of Unstaggered Photosite Sensor Images

The direct superposition of the unstaggered photosite sensor images yields sub-
regions where a 1x3 subregion in one image corresponds exactly to a 3x1 sub-region
in the other (see Fig. 2). We wish to re-construct a 3x3 sub-region from these two
sub-regions. ' Thus, the problem reduces to one of estimating the nine pixel values in
the 3x3 sub-region on the basis of six pixels values comprising the 1x3 and 3X1 sub-
regions. We label the nine required pixel values pl to p9 and the six known pixel
values a, b, and ¢, and d, e, and f, in the 1x3 and 3x1 sub-regions respectively (see
Fig 3). Since pixel a represents the average light intensity incident on pixels 1, 4, and
7, and similar relations exist for pixels, b through f, we can immediately construct six
equations as follows:
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a=@l+ps+pD)/3 )
b=(p2+p5+p8)/3 @)
¢=(p3+p6+p9)/3 3
d=(pl+p2+p3)/3 @)
e=(ph +p5+p6)/3 (5)
f=@T+p8+p9)/3 \ (6)

However, these equations are not all linearly independent. “We can see this by
considering the fact that we can show from the above that the sum of a, b, and c is
equal to the sum of 4, e, and f and hence it is possible to compute any ofa, b, c, d, e,
or f, if the other five pixel values are known. Consequently, we have five equation
and nine unknowns (pixels p1-p9), implying that we require another four equations.
We create these by invoking smoothness constraints on the image. Specifically, we
é‘(;;,y) and t?(a:;,y)

require that the partial derivatives of the image function are

locally constant. Thus:

fox+1,y) - fxy) = kI = flx+2,y) - fx+1,y)
and

fxal,y+1) - fx,y+1) = k2 = fle+2,y+1) - fle+1,y+1)

Using our pixel labels, we have:

p2-pl=p3-p2
p5-p4d=p6-p5

Subtracting and re-arranging, we have:

pS-p2 =p4—p1+p6—p3—p5+p2
Hence:

2(p5 - p2) =p4 - pl +p6-p3

Adding (p5 - p2) to both sides and re-arranging:

3(p5-p2)=(p4+p5+p6)-(p1 +p2 +p3)
Thus:

p5 - p2 = (p4 + p5 + p6)/3 - (p1 + p2 + p3)/3
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pS-p2=e-d @
Similarly:

pS-pd=b-a ®)

p6-p5=c-b 9

The ninth equation (remember one of the above is linearly dependent) comes from
the estimate of the partial derivative in the direction of the line joining pixels p1 and

PS5 (i.e. in the direction given by the angle ﬁ’-. On the one hand, this is given straight-

forwardly by p5 - pl. On the other, it is also given by the component in this direction
of the gradient magnitude, viz:

\/(m;y))z +[@‘(;y,y>]z cofo-2)

where:
Fxy)
@ = arctan M
ox
Hence,
P5-p1= \[(p5— pa)’ +(p5- p2)’ cos(e - %) (10)
where

- p5-p2
0= arctan( AS_ P 4]

Rearranging equations (1) to (10), we get the following expressions for each of the
pixels p1 to p9.

ph=Qa-b-c+3e)3 (11)
pb=pd-a+c (12)
pS=pAd+b-a 13)

p2=pS-e+d (14)
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p8=3b-p2-p5 a8

16

Pl =\/(P5 - p4)’ +(p5- p2) cos(() —§) (16)
p3=3d-p2-pl an
pT=3a-p4-pl as)
P9=3c-pb-p3 19)

Recall that equations (11) to (19), which used to compute the nine pixel values in the
recontructed image, are based on the assumption that the partial derivatives in the x
and y directions are locally constant (over a 3x3 neighbourhood). For the most part,
this is a valid assumption. However, there are some circumstances where we know
that it will lead to a poor approximation. Specifically, if the partial derivatives
change sign (and remember that we have two estimates of each partial derivative in
each region) then certainly the assumption is violated. In this case, it is likely that the
estimate of pl given by equation (16) will be poor and using equations (17), (18),
and (19) to compute p3, p7, and p9 only serves to propagate the error. In such cases
of sign change, we instead estimate p3, p7, and p9 independently using the
appropriate partial derivatives in a similar way to that given in equation (16) for p1.

S. Combination of Staggered Photosite Sensor Images

Unfortunately, the direct superposition of the staggered photosite sensor images does
not yield an exact spatial correspondence between the 1x3 and 3x1 sub-regions (see
figure 4). We have overcome this by transforming the staggered image into an
unstaggered image by estimating the unstaggered pixel values in every alternate row
(or column) of the staggered image. Simple linear interpolation is used to compute
the estimate (see figure 5). The reconstruction then proceeds exactly as in the case of
the unstaggered images, as set out above. As one would expect, this intermediate re-
approximation distorts the image somewhat and consequently, the reconstructed
Image is less faithful than in the case of the unstaggered sensor geometry. This is

borne out by the results which are summarized in figures 15 and 16 and Tables 1
and 2,



6 Results and Evaluation

In order to assess the technique for staggered and unstaggered geometries described
above, the algorithm was tested on simulated sensor data. Figure 6 shows a
uniformly sampled grey-level image of the first of five test scenes. Figures 7 and 8
show the simulated images for the unstaggered geometry with the sensor orientation
at zero and ninety degrees, respectively. Figure 9 shows the effect of reconstituting
the image by simple averaging and figure 10 shows the effect of using the model
presented in this paper. Figures 11 through 14 show these resuits for the same scene
but with the staggered geometry.

The quality of the reconstruction is estimated by computing the root mean square
(RMS) of the error in pixel grey-levels estimates in each case. These figure of merit
values are given for all five scenes (see figures 6 and 15) in Tables 1 & 2 for
unstaggered and staggered sensor geometries, respectively. These values are shown
graphically in Figures 16 and 17.

It is clear from the results presented here that the RMS error is considerably
smaller for those images which do not exhibit a preponderance of intensity
discontinuities (e.g. scenes 1, 3, and 4) and that the RMS rises for images where there
are several sharp edges (e.g. scenes 2 and 5). This dependence on smoothness is
further demonstrated in Figures 18 and 19 which show the variation of the RMS error
with the degree of local average smoothing of the original image for scene 5. The
RMS error decreases with smoothing and the relative decrease is greater for the
algorithm presented in this paper than for the other reconstructions.

7  Discussion

Figures 6 through 14 show the clear qualitative improvement in image resolution
which is achieved by the reconstruction described in this paper and the quantitative
figures of merits confirm this. It should be emphasised that, while this approach does
allow a data reduction factor of a modest 33%, the primary reason for its development
is not the overall image data reduction but rather that it allows a 66% reduction in the
numbet of individual photosites on an individual sensor thereby significantly
increasing the potential yield of any fabrication process.

The results presented in this paper assume perfect registration of both images and
this will be an issue to be addressed when fabricating the final two-sensor camera
system. However, significant problems are not anticipated as it intended to use a
single lens with a beam-splitter and prism. Registration will be effected either by
micropositioning of the sensors or by image translation following a calibration phase.

Perhaps the most obvious drawback of the approach is its reliance on the
assumption of local smoothness in the image. In scene which exhibit strong intensity
discontinuities, these assumptions are violated and the image quality does degrade
somewhat in these regions. The significance of the degradation will depend on the
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nature of the application, the image content, and the image processing which is used
to analyse the image.

Mindful of these issues, we are presently embarking on a more general treatment
of the problem. Two approaches are being pursued: the first is probabalistic, using
outer products to estimate the pixel values, and the second casts the problem in linear
algebraic terms and uses the Moore-Penrose pseudo-inverse to estimate the values.
The power of the linear algebraic approach is that it will allow us to investigate the
the exact implications of the assumptions invoked in addressing what is inherently an
underconstrained problem as a function of image content (i.e. local grey-level pixel
patterns). This work is the subject of ongoing research.

8 Conclusion

We have presented a simple technique which can effectively reconstruct-a high-
resolution image by combining the images generated from two sensors which exhibit
an asymmetric photosite aspect ratio and asymmetric sampling density. We have
done this for two configurations of the sensor geometry, one where the photosite
centroids are co-linear in both directions and another where the photosite centroids
are co-linear in the direction of greater sampling density (i.e. along the sensor
columns) but the origin of each column is offset (staggered) by half the column inter-
photosite distance. Good qualitative and quantitative results have been achieved with
a 23% improvement in the root of sum of square error figure of merit over a simple
reconstruction based on local averaging.
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Fig.1. 2-D sensor comprising assymetrically-shaped photosites with (a)
unstaggered geometry where photosite centroids are co-linear in both directions, and
(b) staggered geometry where centroids are co-linear in the direction of greater
sampling density (i.e. along the sensor columns) but the origin of each column is

offset by half the column inter-pixel distance. Photosites have a 3:1 aspect ratio in
both cases.

Fig. 2. Superposition of two unstaggered orthogonally-oriented images.
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Fig. 3. Figure 3: Combination of 1x3 and 3x1 sub-regions to yield a 3x3 sub-
region.

Fig. 4. Figure 4: Superposition of two staggered orthogonally-oriented images

Fig.5. Bstimation of unstaggered column of pixels from staggered column.



Fig. 6. Original uniformly-sampled grey-level image (scene 1: Child).

Fig. 7. Simulated image for the unstaggered geometry (rotation angle of zero
degrees) with detail.



Fig. 8. Simulated image for the unstaggered geometry (rotation angle of ninety
degrees) with detail.

Fig.9. Reconstructed image using simple averaging.
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Fig. 12. Simulated image for the staggered geometry (rotation angle of ninety
degrees) with detail.

Fig. 13. Reconstructed image using simple averaging.



Fig. 15. Original uniformly-sampled grey-level images (top-left) Scene 2: Seagull
(top-right) Scene 3: Nervecell; (bottom-left) Scene 4: Moonscape; (bottom-right)
Scene 5: VW boot. Refer to Fig. 6 for Scene 1: Child.
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Fig. 16. Figure-of-merit values for the unstaggered sensor geometry. These figure-
of-merit values are estimated by computing the root mean square (RMS) of the
difference values (pixel errors) between the reconstructed image and the orginal
image for five scenes.
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Fig. 17. Figure-of-merit values for the staggered sensor geometry. These figure-of-
merit values are estimated by computing the root mean square (RMS) of the
fiifference values (pixel errors) between the reconstructed image and the orginal
Image for five scenes.
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Unstaggered Sensor Geometry
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Fig. 18. Figure-of-merit values for scene number 5 (VW Boot) as a function of the
degree of smoothing of the original image; unstaggered sensor geometry. As before,
these figure-of-merit values are estimated by computing the root mean square (RMS)
of the difference values (pixel errors) between the reconstructed image and the
orginal (smoothed) image.
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Fig. 19. Figure-of-merit values for scene number 5 (VW Boot) as a function of the
degree of smoothing of the original image; staggered sensor geometry. As before,
these figure-of-merit values are estimated by computing the root mean square (RMS)
of the difference values (pixel errors) between the reconstructed image and the
orginal (smoothed) image.
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