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Abstract

A technique for computing the instantaneous optical flow of two images is presented. The velocity at each point in the image can be
computed by treating a local region as a distinct sub-image which is translating with some velocity, and by identifying the Fourier
components which exhibit the magnitude and phase changes which are consistent with this velocity. The velocity detection itself is
accomplished using a Hough transform. The approach lends itself to the production of arbitrarily dense optical flow fields and the velocity
vectors are computed to sub-pixel accuracy. Image data in a region are weighted as a function of its distance from the region centre to reduce
the impact of ‘edge effects’ caused by the entry and exit of visual data at the region boundary, thereby violating the assumption of pure image
translation. Results are presented for Gaussian weighting functions of three standard deviations, each representing increased attenuation of
image data toward the edge of the image. The proposed approach is evaluated using Otte and Nagel’s benchmark image sequence [Lecture
Notes in Computer Science, Computer Vision—ECCV’94, 1994, pp. 51-60], for which ground-truth data are available, and both maximum

and RMS errors of velocity magnitude and direction are computed. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The measurement of optical flow has received a great deal
of attention from the computer vision community, and the
literature is replete with a very large number of publications
on the topic. Surveys and comparisons of the different
approaches can be found in comprehensive works by Barron
et al. [1], and Otte and Nagel [2]. Most approaches to the
measurement of optical flow in images normally exploit one
of two primary techniques. The first involves the computa-
tion of the spatiotemporal derivatives (first-order or second-
order), differentiating the (filtered or unfiltered) image
sequence with respect to time and thus computing the
optical flow field (e.g. Ref. [3]). The second involves either
feature- or region-based matching (e.g. normalized cross-
correlation) of local iconic information such as raw image
data or segmented features or objects. Comparisons of the
many variations of these approaches and the relationship
between them can be found in Refs [1,2.4,5].

A lesser-used approach exploits the regularity in spatio-
temporal-frequency representations of the image, e.g. the
spatiotemporal Fourier Transform Domain, resulting from
certain types of image motion. It can be shown that the
spatiotemporal Fourier Transform of an image sequence in
which the image content is moving with constant velocity

results in a spatiotemporal-frequency representation which
is equal to the spatial Fourier Transform of the first image
multiplied by a §-Dirac function in the temporal-frequency
domain. This 6-Dirac function is dependent on the image
velocity which can be computed if one knows the position of
the 8-Dirac function and any spatial frequency [6]. Because
this approach is based on image motion, rather than object
motion, it normally assumes uniform (zero) background
when evaluating object motion. Extensions of the technique
have been developed to allow it to cater for situations
involving noisy backgrounds [7], several objects [8,9], and
non-uniform cluttered backgrounds [10].

The use of spatiotemporal frequency representations for the
measurement of optical flow has been developed in depth by
Fleet and Jepson {1,11-13], who have extended the spatio-
temporal frequency framework to deal with situations where
the normal assumption of a single pure (local) image transla-
tion is no longer valid. Their technique, which is based on the
application of a bank of spatiotemporal band-limited velo-
city-tuned linear filters, is able to distinguish different velo-
cities within a given neighbourhood, and is resilient to small
affine geometric deformations of the image neighbourhood.

In this paper, we present an alternative formulation of the
spatiotemporal frequency approach. This alternative uses
the normal spatial Fourier Transform together with a
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Hough Transform, rather than the spatiotemporal Fourier
Transform. The velocity at each point in the image is com-
puted by treating a local region as a distinct sub-image which
is translating with some velocity, and by identifying the Four-
ier components which exhibit the magnitude and phase
changes which are consistent with this velocity. The velocity
detection itself is accomplished using an appropriate Hough
transform. This Hough transform embodies the relationship
between velocity and phase change, and velocity is measured
by locating local maxima in the Hough space. Because it bases
the velocity computation on the Fourier phase information, the
approach is able to estimate the velocity of any signal function
except a uniform flat field (which has an ambiguous flow field
in any case) and, consequently, the approach lends itself to the
production of arbitrarily dense optical flow fields. In addition,
the technique facilitates the computation of the velocity vec-
tors with sub-pixel accuracy.

As we will see in the next section, the computation exploits
a property of the Fourier transform of a signal translating with
uniform velocity, and the underlying assumption is that we
are dealing with translating signals, i.e. signals which are
identical at times #, and ¢, except for a translation. In the
estimation of velocity at a point, we base the estimate of the
velocity on the translation which is apparent in a local region
(or window). Unfortunately, the image data in such a region
will, in fact, exhibit a change due not only to the signal shift,
but also the translation of objects into the window and out of
the window. Consequently, there is a change in the spectral
content of the window and not just a phase change as is
assumed in the model. In order to reduce the impact of this
‘edge effect’, image data in a region are weighted as a func-
tion of its distance from the region centre, i.e. the region is
windowed or apodized. In this paper, a Gaussian weighting
function is used and the Gaussian’s standard deviation o
chosen such that the weighting at some distance from the
region centre is 50% of that at the region centre, where w
is the length (in pixels) of the side of the 2D region. Results
are presented for Gaussian weighting functions of three stan-
dard deviations, each representing increased attenuation of
image data toward the edge of the image (the three functions
provide 50% weighting at w/8, 2w/8 and 3w/$ from the region
centre). In the following, we will denote the three Gaussian
functions as ow/8, 02w/8 and 03w/8.

The proposed approach is evaluated using two images from
Otte and Nagel’s benchmark image sequence [2], for which
ground-truth data are available, and both maximum and RMS
errors of velocity magnitude and direction are reported.

2. Overview of the approach

The discrete Fourier transform F (fix.y)) of a 2D function
fx.y) is given by:
F(f(x,y)) =F(k,, k,)

- ik + yy)
g )Zf(x, e

and the inverse discrete Fourier transform is:

fey)=F~ 'k, k)

- (2_—;')2 2. 2 B, ke~ it
k,r k_\'

where [F(k,.k,)| is the real-valued amplitude spectrum and
o(ky,k,) is the real-valued phase spectrum.

For a function translating with constant velocity Vavy),
SAx, y) becomes fix — v,6t, y — v,01). By the shift property
[14], its Fourier transform is given by:

F(f(x—v,8t,y —v,60) = |[F(k,, ky) o4k kg = b +iyn,dr)

Thus, a spatial shift of (v,d7, v,01) of a signal in the spatial
domain, i.e. fix,y) shifted to Ax — vt Y — v,07), only
produces a change in the phase of the Fourier components
in the frequency domain. This phase change is
e =8 ko 1 order to estimate the velocity of a signal
translating with constant velocity in the image, we simply
need to identify the set of frequency components X, and k,
which have all been modified by the same phase shift, i.e.
e~ M hn8 T4 accomplish this, we note that the phase
spectrum for the shifted wave at time ¢ + 61 is equal to the
phase spectrum of the wave at time ¢ multiplied by the phase
change given above:

gibrvinlkenky) _ g ~ itkev,dt 4+ k80 ke )
= i@l k)~ Uev,bt + by, 81))

Hence:
¢I+ 3t(kx7 ky) = ¢t(kx’ ky) - (kxvxat + kyVy6t)

That is the phase at time 7 + 6¢ is equal to the initial phase at
time ¢ minus (k,v,8 + k,v,00). Since we require v, and Vy
we rearrange as follows:

1
Vy = khatﬂbt(kx’ ky) - ¢l+5f(kx’ ky) - kxvxat) (l)
'y

This equation is degenerate if k, = 0, in which case
we substitute k, = 0 into Eq. (1) and use an alternative
re-arrangement as follows:

1
%= ik k) = b e k) @

If we have two images taken at time 7 = ¢y and t = to + 6t,
we can compute ¢ 9 and ¢,¢.4. Treating the equation above
as a Hough transform, with a 2D Hough transform space
defined on v,, vy, then we can compute v, for all possible
values of v, and for all (known) values of k,, k., ¢k, k),
®r4oiky, k) Local maxima in this v, vy Hough
transform space signify Fourier components which com-
prise signals in the spatial domain which are moving
with constant velocity v,, v,. Note that, in both Eq. (1)
and Eq. (2), ¢(k,, k,) represents the absolute phase of
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frequency (k,, k,). However, in the Fourier domain, the tation, we have allowed for this by solving Eq. (1) and
phase is bounded by = 27 and phase values will Eq. (2) for the given phase values ¢(k,, k,) + 2nw, ¢ > 0;
‘wrap’ as they cross this threshold. In effect, phase ok, ky) — 2nw, ¢ < 0, for all n such that 2n7 < kW 01!
values are represented modulo 27. In this implemen- + 1k sl

AR AR A A AR AR
AR R AR AR AR AT AR
AR AR A AR A AR AR
AR AR AR R R AR R AR A AR
AR R AR R ARAR A AR AR AR
R R R R AR A A Y
R AR R AR AR AR A R AR
AR R A AR AR R AR AR AN
AR AR AR A R AR A A AR A AR
AR R A AR AR R A R A AR AR
RARA R R AR AR R AR AR RSN
RARAR AR AR A AR A RN
RARA R R R A AR A R AR AR RN
AAR AR AR AR AR A A AR AN
AR R AR A AR AR AR A AN
AR AR A R AR A A A A A
AR A AR AR AR AR R AR AN
AR R R R A R AR A AR AR AR AR
AR AR R AR AR AR AR
e e T T

(b)

L C w7 * " - p—
1 4 20000 - 3 30000 .
2008 7 N <408 7
10000 [ - 10000 | -
Sy % 2 0 @ 2 by 50 100 15 200

(e) (f)

Fig. 1. (a) Simple test sequence: optical flow is computed using this image, and this image is translated by 2 pixels in the x and v direction. (b) The optical flow
field is computed using phase information (Gaussian weighting function with 50% weight at w/4 from the window centre; w. the window size, equals
64 pixels). (c), (d) Absolute value of error in magnitude and direction of computed flow, respectively (error is proportional to darkness; maxirmum magnitude
error = 0.141 pixels, maximum direction error = 0.025 radians). (e), (f) Histogram of magnitude and direction values of computed flow, respectively (values
are scaled by 100).
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We note in passing that the computational complexity of
the algorithm for the estimation of the velocity of one region
is O(nmz) where m is the dimension of the Fourier domain
and n is the dimension of the Hough transform space (and is
proportional to the measurable accuracy) since Eq. (1) must
be computed for all x and y spatial frequencies, and for all
possible values of v,. Thus, the computational complexity of
estimation of the tota] optical flow field is O(nm*), since the
dimension of the Fourier domain  is the same as that of the
original image.

The full algorithm is summarized below.

3. Results

Fig. 1 shows the result of applying the technique to two
images where the second image is simply the first translated
in the x and y direction by 2 pixels. It should be emphasized
that this test is intended to do no more than demonstrate the
accuracy and repeatability of the technique on real data with
a known (and trivial) flow-field. Fig. 1(a) shows the test
image. Fig. 1(b) shows the computed flow field using
Gaussian weighting functions with 50% weight at w/4 pixels
from window centre (w = window size). Note that all of the

/* compute the optical flow at coordinates i and j in images f1(i,j) and £2(i,j) =*/
/* where i and j are the coordinates of the centre of a valid 64 x 64 pixel region */

/* i and j effectively sample the image with a sampling period sp */
/* (sp = 10 pixels in the results presented in this paper) ' */
/* The dimensions of £(i,j) are assumed to be given by a variables d_i and d_j */
initial_i = 32; final_j = d_i - 32;
initial_j = 32; final_j = d_j - 32;

for (i = initial_i; i < final i; i = i + sp)

for (j = initial j; j < final_ j; j = j + sp)

extract 64x64 pixel regions f1’ and f£2’, centred at i,j, from f1 and £2

apodized/window f1’ and f2' by comput ing

gi(x,y)

g2(x,y) = £2°(x,y) x G(x,y)

f1°(x,y) x G(x,y) // G(x,y) is a 64x64 pixel Gaussian
// = 0.5 at nw/8 pixels from centre

// (n=1, 2, 3 and w = 64)

compute Gi(kx, ky), the Fourier transform of gi(x,y)
compute G2(kx, ky), the Fourier transform of g2(x,y)

compute the phases of G1 and G2:

for (kx = inital _kx; kx < final kx; kx = kx + 1)
for (ky = inital_k; ky < final_ky; ky = ky + 1)

P1(kx, ky) and P2(kx, ky)

// -32 < kx < 32
// =32 < ky < 32

compute phase difference: pd = Pi(kx, ky) - P2(kx, ky);

if (ky !'= 0)

for (vx = 0; vx < 10; vx = vx + 0.1)

vy = (pd - (kx * vx)) / ky

Hough_accumulator([vx,vyl] += 1

else if (kx != 0)
vx = pd / kx;

for (vy = 0; vy < 10; vy = vy + 0.1)
Hough_accumulator[vx,vyl += 1

Identify vx_max, vy_max such that

// vx is the x velocity

// vy is the y velocity

Hough_accumulator [vx_max] [vy_max] >= Hough_accumulator[vx] [vy], for all vx, vy

vVx_max, vy_max is the velocity of the 64x64 region centred at i,j
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Table 1

Summary of mean magnitude and mean direction of ground-truth data and measured velocities

Sequence Gaussian weighting Magnitude Direction

Mean Standard deviation Mean Standard deviation

Image translation benchmark Ground truth 2.828 0.0 0.785 0.0
3w/8 2.756 0.009 0.760 0.003
2w/8 2.757 0.005 0.760 0.001
w/8 2.745 0.018 0.764 0.006

Otte and Nagel benchmark Ground truth 1.586 0.627 0.318 0.217
3w/8 1.171 0.503 0.597 0.297
2wi8 1.207 0.523 0.588 0.291
wi8 1.157 0.526 0.579 0.288

results shown in this paper were computed with a window
size of 64 X 64 pixels. Fig. 1(c) and (d) shows the absolute
value of the error of the magnitude and direction of the
computed flow field. Fig. 1(e) and (f) shows a histogram
of the magnitude and direction values of the computed
flow field. Table 1 summarizes the mean magnitude and
mean direction of ground-truth data, and the measured
velocities; Table 2 provides a summary of the RMS and
maximum errors of the measured velocities. The chief
point to note about these results is that the correct flow
field is computed to within 0.1 pixels (magnitude) and
0.03 radians (direction).

Figs. 2—5 demonstrate the results of applying the tech-
nique to two images in Otte and Nagel's ground-truth test
sequence [2]. This sequence comprises images of a real
scene acquired with a camera mounted on a moving robot
arm. The camera motion is a pure 3D translation toward the
scene which comprises a stationary ground plane, four
stationary pillars and a fifth pillar which is translating to
the left. The scene exhibits strong occlusion by both the
stationary and moving pillars. The magnitude and direction
of the complete optical flow fields of the sequence were
computed by Otte and Nagel on the basis of camera calibra-
tion data and the robot motion parameters. The sequence
and ground-truth flow fields are available by anonymous ftp
at www-kogs.iitb.fhg.de/~mut/kogs/node6/htmitdatabase.

Fig. 2(a) and (b) shows images number 40 and 41 in the
sequence. Fig. 2(c) is the true optical flow field extracted
directly from the ground-truth data (sampled every 10
pixels). Fig. 2(d)—(f) show the optical flow field computed
in the manner described above, and using Gaussian weight-
ing functions with 50% weight at 3w/8, 2w/8 and w/8 pixels

Table 2
Summary of errors in measured velocities

from the window centre, respectively (w = window size).
Flow vectors are plotted every 10 pixels and their
magnitude has been scaled by a factor of four.

Fig. 3(a) shows the true magnitude of the optical flow
field extracted from Otte and Nagel’s ground-truth data,
while Fig. 3(b)—(d) shows the magnitude of the computed
optical flow field using Gaussian weighting functions with
50% weight at 3w/8, 2w/8 and w/8 pixels from the window
centre, respectively. These images were generated by com-
puting the optical flow vectors every 10 pixels (in both
directions) and then by interpolating (bi-linearly) between
these computed values.

Fig. 4 shows the true direction of the optical flow field
extracted from Otte and Nagel’s ground-truth data, while
Fig. 4 (b)—(d) shows the direction of the computed optical
flow field using Gaussian weighting functions with 50%
weight at 3w/8, 2w/8 and w/8 pixels from the window
centre, respectively. Again, these images were generated
by bi-linear interpolation between the optical flow vector
values estimated every 5 pixels.

Fig. 5 (a)-(c) shows the absolute difference between
ground-truth magnitude values and those computed using
phase information [i.e. the difference between Fig. 3(a)
and (b), (c) and (d), respectively]. In the same manner,
Fig. 5 (d)-(f) shows the absolute difference between
ground-truth direction values and those computed using
phase information [i.e. the difference between Fig. 4 (a)
and (b), (c) and (d), respectively].

Again, Table 1 summarizes the mean magnitude and
mean direction of ground-truth data and measured velocities;
Table 2 provides a summary of the RMS and maximum
errors of the measured velocities.

Sequence Gaussian weighting RMS error Maximum error
Magnitude (pixels) Direction (radians) Magnitude (pixels) Direction (radians)

Image translation benchmark 3w/8 0.072 0.024 0.141 0.025

2w/8 0.070 0.021 0.141 0.025

wi8 0.085 0.021 0.141 0.025
Otte and Nagel benchmark 3w/8 0.591 0.380 —8.215 3.119

2w/8 0516 0.355 —3.605 —3.141

w/8 0.583 0.346 2.649 —3.141




194 D. Vernon / Image and Vision Computing 17 (1999) 189199

Yee e 4y Sty

IRRE IR R =N

IERERE] B PR S P,

IZRER N A rerpms AxAvyndy vy

tetaey B y 3y d vty

IERIRE] P ugn rrvar H [N R d -

. IERIEEE] a Aot vaaen YN v vv s NN vvNY Y = mb—

EEXERIRERERT At - P R At i R R R eI IV LA
FEEE I 194 I ATt Fain - reiwas R i R I SV A AR A s
SR D R L R R T T e e tu s NP —— - PPV R E R o D D NP
IR R R R R PR RO A - rrzvees MR R R R R v pvEa s
AT I I I Ira T Aty TR MR R T R D R DR A A AR
R e e T Av A = 2arvws R YR NNV VY NYN N Y VY %Y ¥ N oy reimtr
T AT I TS DA RIS AL 9t A A S h bbbt 4 D b+ At ettt 4 ot AR R R LR TRV A A A
PIAA AT d et At S I D e R o L TR TR AR A s A A
T4 b a4 a4 seas e A —— e A R R T T D D P S A A SN
FAAAI IS99 A ad a2t et St ARSI AR DT R VR A i a5
FAA A I A A A A AL AT a Ao A A S O o LR DR PRIV A A A a0
IRV A A A S A R I A ottt ot bl bttt ot ot R S S RV A A A A
VIV VI II RIS S A AV AT v ptoit ~ AR R TR DT LD AVR A A i A v
AR BRIV VYRS VA A S ST AL A AANAAIA A D Ity tyy It AR e R D T T L VRSV S A A
BEIIII I AV I I IS AT vy Ty AR A R e R L R T LR T PRI RN S
P R R R D p i vrovy ~ AR R R R NI PER OGRS A S A A
N N N NI I AL AV SIS VS A ¥ S AV A AT T % S S ¥ ottt ittt NN A R N L R LR T I T T R M A A v
NN NNV T AV IV AV TV AT A AT Y Y% Y P Y o gyttt R R T L L T R T T T R NN
NN N Ny A Y S Ay At = YV % s gy iy RN A A A R A R R R T E R DA NN
B N N N N Y A Y VA Vs ¥ Y Y Y % g g ypp Attt MR A A N N I I T TSI 2 ~~
MARSIAARAARRNAI SRR SRR A A e L R IR L AR A A0 Aaa A/ MR AR R A LI ST R P T INE IR AAA A AN
T N o N S N N N N N AT ¥ ¥ ¥ % % W Dty T N Y N NN N S I N NI Y YNNI YL b T d v kb)) P
Y N S Y Y Y Y N NN NN YN I TIY ¥ ¥ % ¥ % ¥ ¥y Iy MM R N I P TR I IR R A
PARAR SRR R SRRV A - A R N N NN NN N S N YN NN NI NNE YN YN T35 3 5 vy
MRRANPERARARARAAAAA ARSI RS R R A A AA A aa LA, TN EMANANINN A IFISYYIS YIRS 3 E 5 2 3 NN
N Y A N Y ¥ Y % ¥ % ¥ ISttty I A A A N N I T I T T T R A at
MASMIAMSIAMAAMAAAS IR AN I L S A aapasana NN R A R A A T A I E A AR NN
T Y Y S N NN NN NN NN ¥ VY Y ¥ % % T Ig gy ~ropres RN R S R R R R R A N AN S SN AN A A
I I IS N N NN NNANIY Y ¥ 3 Y % 5 % g r ity oty MR AR N R D M N A eV AR A AN
AR A I R AT DRIV A SAAY MOI D AN A MRS T I T S RO A A A Ay
T Y S Y S NS YN NN N NNYNY Y Y% S ¥ ¥ ¥ Ty oo, N NN N N N NN NN NN TSN YT NN YNNI S Y 35 55 Y w————
MMM OMAAARAARAAAARARAARAS I R I L T LR A aaa e a ity NN AN SR AN R A R N I T T R IR RN A A
D I R I A N NNV R vy A e e A4 N RN AR AR A I TR TR NAN A AN
AR AR AR A S AT R R R R At e vt A AN A AN A R A N R L NI S SO SINANAANAAN
AR RN SV PR A A A it PRI I LMY NN NN AN NNNSUSNNNNN L3 35 Y 3
DR AR AN A AT R MR VEVR YN A - RN R N N N R I SRR NA A A A
T Y N N N N N S NN N NN Y Y b T N N Y M Y N N N S N N S SN Y Y Y YN S NN S Y A S
T N Y N Y N N e Y N N N N S T et DN NN NN I A A R R A A NN AN
T o o S N Y Y N Y N NN N N N S ey NN AANNRRA AR LA RN DR NNA A AN A
T N N e N N N N N N N N NS i AR R RS R I MMMV OO ONNAASA AN AN
L N N N Ny S S S S N N N N S N N NN
T T T o T N Y T T Ny Y S oy N T

P~
AR A e e A R A A 2 AN AR A AR A R R A A :

() (d)

ARyt A4t g

Ay gy Aty Haaa

Lty i v AA L g

N ANty N A v 2wty
» DT S LUV o) 4a R
M R e O R NN ~ - v Fvvy wyvan
> YR TIABASN T A w w b gty ey . P eyx Fdayyuyvee ~
» M AR I R L LD LAy A . » AV s Yy YNNYYIs v we ey v b
M AR A S R R R R A AAAA Al . - BTN N uuax ARy AV vs Yy v vy
’ R AR R R R R A/ aiainaini - v FEIUN S NI v AN VI VI ¥ ¥ vy gy
» AR I R A AAamun » » TIEEVIHVAVNA i Y Ay g gy
» MR S aAAASaasal IEEEET Fysyy e wwwa AR s e
v Y A Y N Y Y Y gt e A I TS S D TR v
- NN NN NS YN Y NNV e, vai vy TR R e IR A A
- D et B D R D LS A A s S5 s A MM Sy wwv vy YA
- PN Y N VY N~ Y N Y ¥ i iy T aYy o wvvesweweey A A S Y YN
v SRR e e R TR T Aisdu st it P Er Yy ity ey vy uy A e A A A
- M AR P h R NI AA A A A P EY NIy eve v mr vy WYYy NN
M A R e bR RNV A e TR RN I Y Y YN NNy R A e vy &by
M VI I EAAYNL Y o Y o e Y Y Yr MYy v Yy vy v AR R S R i o i
N FEIVIIE G SN T ST Y 2 ¥ o Iy TR AP AMA A YEYY SRRy Ny MR Y EE O Sy gy
N M AL LR T R R Attt FR ANy NI R N INNYE RV VY NY rraarysyy ~—
» ARSI R R TR A A AN AN AN VYN YR Y YNV Y YL Y R -
» AR LR T T T R A A A i YN R VNN IY YR YNINY YN e e kr x oy e >
N I R IET o~ AR S 2 T R e [EERE TR i
v AR IR R IS T v A 2 T2 T S Y SN
. MR TS R R T T T TR iivig Y YT YNV MM IS YR Y Yy vy wy BTN S
N MO E S IS TR T R RN A b NN R R TR FE TR NS
. PENIIIYRNNSLLL v 4 2 a3 e RN R L T R L Ry Py NN a NN
. IESANINNNNSIYN b v r 2 r s o —— NN R R [N A
» IO NN SNIYNS SN R 20 b s b T ———— BRI NN E AN NAINENINSANSYNNTNY a2 x N e
» IYRIYIIINNSINL 5 K s s AN R N A A T N E IR RN s
N FUSISUNEINNLNI 55 55 3 N NSRRI 2 A A AN At
> PSRN NI NMNN YIS s s N ~ PR YRR RN YIS ENN YNy NNy Y -;)a\.:\-\\.\.\;t
¥ FEIIIANIUNUS TV 20 55 3 Ny NN XY RV AN RN I NN NN NNS NN N NNy T NN ~
~ FUAT NI IIAININ L S 4 33 3 NN ———— F RNV AN RN A NANNN NN SN N Y Yy B ESNNSS
N NEANRANARRRARR AN T IR AAAY NN AR A R S S Ay £23 INNNSOR LSS
- DIIEEEINNNNNNNY AN L 55 35 3 e ———— MR N RO AR S IES TR ivpnang
¥ FEXENIINNNSIYNNI 2 45555 N A A A A I T T RN ~
v EEENELNULYNYNLIL A 5 vy AN MR S ANNRNANARA A R A A A A T NN -
N ANMRARARARAARN RS B SN e MR NRENANAARAAR A AR R L I E BTSN R vt
N AR AR AR R N MRS SRR R R AR D RV NN
~ I I N NN N S NN N SN S NNNNNS NN Y A RN L AN A S N N NN Y N NN NS NN S 5 5N NN s S NNy
M T Y I I SR IN MR AN YN NNNNN N N MRS NINN N NN AR SAA A R A R A N AN
¥ A A A A DRSNS AL AN AR R R A R S S A NN AN AN

() (f)

Fig. 2. (a), (b) Images number 40 and 43 of Otte and Nagel's ground-truth motion sequence. (c) True optical flow field given by Otte and Nagel’s ground-truth
data (sampled every 10 pixels). (d)—(f) Optical flow field computed using phase information (Gaussian weighting function with 50% wei ght at 3w/8, 2w/8, w/
8 pixels from the window centre, respectively: w, the window size, equals 64 pixels).
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Note that all of the results presented in this paper are the
unprocessed output of the algorithm (apart from inter-
polation); each velocity vector has been estimated inde-
pendently, and the vector field has not been subjected to
median or mean filtering.

4. Discussion

The results demonstrate that the approach described pro-
duces a dense, accurate, repeatable and reasonably complete
flow field. However, in the case of the flow field produced
with ‘wider’ weighting functions, i.e. the Gaussians with
standard deviation o3w/8 and 02w/8, the velocity represents
an average or aggregate velocity in the windows. Normally,
this is not a problem, especially where the velocity profile in
the window is either constant or varying linearly, since the

(c)

average will represent a good estimate at the centre of the
window over which the estimate is taken. On the other hand,
if there is a discontinuity in the velocity profile in the
window, such as is the case where there exist two or more
objects moving in the window, then this estimate will be
inaccurate and will represent an aggregation of all the
velocities. The reason for this becomes clear when we
reflect on the manner in which we are computing the
velocity estimate, i.e. by computing the phase changes of
the Fourier frequency components. We have made the tacit
assumption that there is just one single object moving in the
image or, equivalently, that the image function translates
with unique and uniform velocity. Thus, the Fourier com-
ponents all exhibit the (frequency-dependent) phase change
associated with this velocity. When there are two velocities,
the Fourier component is the resultant of the two individual
components of each object (assuming common spectral

(b)

(@)

Fig. 3. (a) Magnitude of the optical flow field extracted from Otte and Nagel's ground truth data. (b)-(d) Magnitude of the optical flow field computed using
phase information (Gaussian weighting function with 50% weight at 3w/8. 2u/8, w/8 pixels from window centre, respectively; w, the window size, equals

64 pixels).
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(a)

(c)

: ' (b)

Fig. 4. (a) Direction of the optical flow field extracted from Otte and N agel’s ground-truth data. (b)—(d) Magnitude of the optical flow field computed using
phase information (Gaussian weighting function with 50% weight at 3w/8, 2w/8, w/8 pixels from the window centre, respectively; w, the window size, equals

64 pixels).

support), and the technique described in this paper computes
the velocity based on the phase change of the resultant, and
not of the individual components. Since the phase change of
the resultant Fourier component will depend on the phase
changes of the individual components and their magnitude,
the computed velocity will be some aggregate of the
velocities of the two components. If the magnitude of the
components are equal, the phase change of the resultant
will be the average of the phase change of the individual
components.

As the window in which the velocity is being estimated
encounters, and crosses, a velocity discontinuity, as in the
case of an occluding boundary, the computed velocity will
change from a true estimate of the velocity of the first object
to a true estimate of the velocity of the second object,
passing through estimates of the aggregate velocity of the
two. This is particularly evident in the velocity fields

associated with the ‘wider’ weighting functions, o2w/8
and o3w/8 [see Fig. 2 (d) and (e)], since they incorporate
more components from both objects as the window passes
over them. The flow-field associated with the ow/8 weight-
ing function represents an attempt to reduce the effective
support, computing just one velocity. However, the reduced
suppoit introduces its own problems. The velocity estimate
is more prone to produce spurious results and, given its
reduced ‘window of visibility’, it encounters problems in
identifying a velocity in regions where the image function
is approximately constant and, hence, there is no detectable
phase change [see Fig. 2(f)].

We can overcome this somewhat by reducing the thresh-
old of the frequency magnitude which a component must
exhibit in order to be used in the computation. Although this
does result in a more complete flow field, these values tend
not to be quite as reliable.
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(e) (f)

Fig. 5. (@)—(c) Absolute difference between computed and ground-truth magnitude values, (d)—(f) between computed and ground-truth direction values
(Gausssian weighting function with 50% weight at 3w/8, 2w/8, w/8 pixels from the window centre, respectively; w, the window size, equals 64 pixels). Note
darkness is proportional to error.
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The proper solution to this problem would be to identify
explicitly the two (or more) velocities of those objects
translating in the window and then to assign the appropriate
velocity to that being estimated in the window. This requires
that the resultant Fourier component and its phase change,
which forms the basis of the velocity computation, be
decomposed into its constituent components, where each
component corresponds directly to a distinct object, and
these components and their phase changes then be used to
identify the velocity.

What of the accuracy of the technique? The accuracy is
dependent on the resolution of the Hough accumulator since
it effectively samples the velocity space. We have adopted,
somewhat arbitrarily, a velocity sampling period of
0.1 pixel (i.e. the interpixel-distance in the velocity Hough
space is equivalent to 0.1 pixels/frame). Fig. 1(e) and ),
together with Tables 1 and 2, show clearly that the technique
is indeed capable of consistent computation of the flow to
within this tolerance, at least for the trivial flow field shown
in Fig. 1. For a more demanding assessment of the tech-
nique, we have used Otte and Nagel’s [2] benchmark
sequence. This sequence has the major benefit that ground
truth optical flow is avajlable [i.e. the magnitude and direc-
tion of the optical flow of (almost) every point in the image].
To compare the optical flow computed with the algorithm
presented in this paper and ground-truth, the optical flow
was estimated every 10 pixels (for the three Gaussian
weighting functions), and then a complete optical flow
image was produced for both magnitude and direction by
interpolating bi-linearly among these points (see Figs 3 and
4). These were then compared to the ground-truth magni-
tude and direction images by estimating the RMS error and
the maximum error (see Table 2). In addition, the point-by-
point difference between the magnitude and direction of the
computed optical flow and the ground-truth optical flow is
shown in Fig. 5.

Finally, the mean and standard deviation of the magni-
tude and direction of the ground-truth flow field and the
three computed flow fields are given in Table 1.

Referring to these images and tables, a number of points
can be noted.

First, it is clear that the main errors occur, as one would
expect bearing in mind the discussion above, at the occlud-
ing contours and, in particular, at the contour where the two
objects are moving with significant velocities (as, e.g. in the
case with the white block and large dark block in the fore-
ground). Again, as expected, this error is greater for the
wider weighting functions and, because the velocity
estimate is based on a larger effective support, the error
propagates into a bigger region around the occluding
contour.

Second, the mean magnitudes and directions of the three
computed flow fields are consistent and do not vary signifi-
cantly (1.171, 1.207 and 1.157 pixels, and 0.597, 0.588,
0.579 radians, for mean magnitudes and directions, respec-
tively). However, they do differ from the ground-truth mean

magnitude and direction values of 1.586 and 0.318, respec-
tively. Interestingly, the standard deviations of all four fields
are reasonably consistent. Clearly, there is a bias in the
measurement (assuming, as we must, that the ground-truth
data are correct). This apparent bias is evident in the vector-
field [compare Fig. 2 (d), () and (f) with (c)] and shows up
in the RMS error estimates. On the other hand, it also has to
be said that the algorithm reliably and consistently produces
the correct magnitude and direction (to better than 0.1 pixel)
when tested on artificial test images.

5. Conclusions

Notwithstanding the apparent bias of the results of the
approach when tested with Otte and Nagel’s ground truth
data, the technique presented produces dense, consistent and
accurate instantaneous optical flow fields. The use of a
Gaussian weighting function which provides a 50% weight-
ing at w/4 pixels from the centre of the window in which the
velocity estimate is being computed provides a good com-
promise between distortion introduced due to edge-effects
and the inability to compute an estimate due to the small
support of the estimate.

The major problem of the approach is that it produces an
aggregate velocity estimate in regions comprising objects
with two distinct velocities (e.g. in the local region around
occluding contours). A solution to this problem is the
subject of current research.
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