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Cognitive Science

Louis Kauffman
President of the American Society for Cybernetics

"Cybernetics is the study of systems and processes
that interact with themselves and
produce themselves from themselves."
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Cognitive Science

N. Wiener
Cybernetics: or the Control and Communication in the
Animal and the Machine, 1948.

(kuBepvntnc or kybernetes: steersman)
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W. R. Ashby.

Design for a Brain, first edition, 1952 ... 1956, 1960.
Introduction to Cybernetics, 1957
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W. S. McCulloch and W. Pitts.

Cognitive Science

"A logical calculus of ideas immanent in nervous

activity", Bulletin of Mathematical Biophysics,

5:115-133, 1943.
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Explicit & symbolic

Representations denote external objects

Isomorphic

Absolute and accessible ontology

That is consistent with human expression
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Robots That Use the Web as an Information Resource

By Moritz Tenorth, Ulrich
Klank, Dejan Pangercic,and
Michael Beetz

Web-Enabled Robots



Cognitivism & Artificial Intelligence

* Physical symbol system approach to Al

* Intelligence

— Principle of rationality [Newell 82]

‘If an agent has knowledge that one of its actions will lead to one of its goals,
then the agent will select that action’

— Rational analysis [Anderson 89]

‘The cognitive system optimizes the adaptation of the behaviour of the
organism’.



Cognitivism & Artificial Intelligence

Physical Symbol Systems
[Newell and Simon 1976]

The Physical Symbol System Hypothesis

A physical symbol system has the
necessary and sufficient means of
general intelligence

Computer Science asEmpirical Inquiry:

Symbols and Search

Allen Newell and Herbert A. Simon

Computer science is the study of the phenomena
surrounding computers. The founders of this society
understood this very well when they called themselves
the Association for Computing Machinery. The
machine—not just the hardware, but the programmed,
living machine—is the organism we study.

This is the tenth Turing Lecture. The nine persons
who preceded us on this platform have presented nine
different views of computer science. For our organism,
the machine, can be studied at many levels and from
many sides. We are deeply honored to appear here
today and to present yet another view, the one that has
permeated the scientific work for which we have been

. Key Words and Phrases: symbols, search, science, computer
science, empirical, Turing, artificial intelligence, intelligence, list
processing, cognition, heuristics, problem solving.

CR Categories: 1.0, 2.1, 3.3, 3.6, 5.7.

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication,

to its date of issue, and to the fact that reprinting privileges
were granted by permission of the Association for Computing
Machinery.

The authors’ research over the years has been supported in part
by the Advanced Research Projects Agency of the Department of
Defense (monitored by the Air Force Office of Scientific Research)
and in part by the National Institutes of Mental Health.

Authors’ address: Carnegie-Mellon University, Pittsburgh.
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Communications March 1976
of Volume 19
the ACM Number 3



Cognitivism & Artificial Intelligence

Physical Symbol Systems
[Newell and Simon 1976]

The Heuristic Search Hypothesis

The task of intelligence is to avert
the ever-present threat of the
exponential explosion of search

Computer Science asEmpirical Inquiry:

Symbols and Search

Allen Newell and Herbert A. Simon

Computer science is the study of the phenomena
surrounding computers. The founders of this society
understood this very well when they called themselves
the Association for Computing Machinery. The
machine—not just the hardware, but the programmed,
living machine—is the organism we study.

This is the tenth Turing Lecture. The nine persons
who preceded us on this platform have presented nine
different views of computer science. For our organism,
the machine, can be studied at many levels and from
many sides. We are deeply honored to appear here
today and to present yet another view, the one that has
permeated the scientific work for which we have been

. Key Words and Phrases: symbols, search, science, computer
science, empirical, Turing, artificial intelligence, intelligence, list
processing, cognition, heuristics, problem solving.

CR Categories: 1.0, 2.1, 3.3, 3.6, 5.7.

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication,

to its date of issue, and to the fact that reprinting privileges
were granted by permission of the Association for Computing
Machinery.

The authors’ research over the years has been supported in part
by the Advanced Research Projects Agency of the Department of
Defense (monitored by the Air Force Office of Scientific Research)
and in part by the National Institutes of Mental Health.

Authors’ address: Carnegie-Mellon University, Pittsburgh.
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Cognitivism & Artificial Intelligence

Physical Symbol Systems
[Newell and Simon 1976]

Symbol Systems

compris‘e/ \comprise

Symbol Structures / ) Processes
EXpreSSIOnS / Produce, destroy, modify

Patterns

designate/ \ designate

Objects Processes

\

Can affect objects
Can be affected by objects

Can be interpreted: carry out the designated process



Cognitivism & Artificial Intelligence

Unified Theories of Cognition

— Attempts to explain all the
mechanisms of all problems in
its domain

— Applies to both natural and
artificial cognition
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Cognition is the process whereby
an autonomous system becomes
viable and effective in its
environment

Cognition

Maturana and Varela 1987
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The system constructs its reality
(world) as a result of its operation in
that world

Cognition
(cf. radical constructivism)
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Cognition complements perception
[Giulio Sandini]

Cognition Perception deal with the immediate

Cognition deals with the future

/ across many time scales

Emergent
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The Future




Cognition:

act effectively,
anticipate the need to act,
and increase the repertoire of actions
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Self-organization

System is continually re-constituting itself
in real-time to maintain it operational
identity

Cognition

Through mutual system-environment
/ interaction and co-determination
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Cognition




Cognition

- i

Autonomy




Autonomous system

—> 1

[Note: this ideogram and similar ones to follow were introduced in Maturana and Varela 1987]



‘] Anticipation / Planning / Explanation / Prediction
Autonomous system

with a nervous system A TAT AT AT W oW N
capable of development

[Note: this ideogram and similar ones to follow were introduced in Maturana and Varela 1987]
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Differences between Cognitivist & Emergent Paradigms

Computational operation
Representational framework
Semantic grounding
Temporal constraints
Inter-agent epistemology
Embodiment

Perception

Action

Anticipation

10. Adaptation

11. Motivation

12. Autonomy

13. Cognition

14. Philosophical foundation

Differences between Cognitivist

. —

OCONOO WM =

[Vernon, Von Hofsten, Fadiga 2010]



The Cognitivist Paradigm vs. the Emergent Paradigm

Characteristic

Cognitivist

Emergent

Computational Operation

Representational Framework

Semantic Grounding
Temporal Constraints
Inter-agent epistemology
Embodiment

Perception

Action

Anticipation

Adaptation

Motivation

Autonomy

Cognition

Philosophical Foundation

Syntactic manipulation of symbols
Patterns of symbol tokens
Percept-symbol association
Atemporal

Agent-independent

No role implied: functionalist
Abstract symbolic representations
Causal consequence of symbol manipulation
Procedural or probabilistic reasoning
Learn new knowledge

Criteria for goal selection

Not entailed

Rational goal-achievement

Positivism

Concurrent self-organization of a network
Global system states

Skill construction

Synchronous real-time entrainment
Agent-dependent

Direct constitutive role: non-functionalist
Perturbation by the environment
Perturbation by the system

Traverse of perception-action state space
Develop new dynamics

Increase space of interaction

Cognition entails autonomy
Self-maintenance and self-development
Phenomenology

ENGAGED IN ALLOSTASIS
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Hybrid Models

VS



Hybrid Models

VS

Reconcile all differences,
including antagonistic
philosophical foundations



Hybrid Models

VS

Symbolic & sub-symbolic
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Cognitive Architectures Forums

BICA Society

Biologically Inspired Cognitive Architectures Society

http://bicasociety.org/

Biologically Inspired Cognitive

Architectures
j . ,6 > Supports Open Access
@ ! 67
//.- Editor in Chief: A. Samsonovich

https://www.journals.elsevier.com/biologically-inspired-cognitive-architectures/

M Cognitive Systems Research

Editor-in-Chief: T. R. Besold

— > View Editorial Board

= > CiteScore: 3.2 @ Impact Factor: 1.902 @

ISSN: 1389-0417

https://www.journals.elsevier.com/cognitive-systems-research
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Cognitivist
Systems

Cognitive
Architecture

The term originated with the
work of [Newell 1990]

Cognition

Emergent
Systems

Hybrid
Systems

—

Connectionist Enactive
Approaches v Approaches
Dynamical
Approaches
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Cognitivist Cognitive Architecture

Attempts to create Unified Theories of Cognition (UTC])

UTCs cover a broad range of cognitive issues:

* Attention

*  Memory

* Problem solving
* Decision making
* Learning

from several aspects:

* Psychology
*  Neuroscience

* Computer Science
. [Byrne O3]



Cognitivist Cognitive Architecture

An embodiment of a scientific hypothesis about those
aspects of human cognition that are:

* relatively constant over time and

* relatively independent of task

[Ritter & Young 2001]



Cognitivist Cognitive Architecture

* (eneric computational model:

* Not domain-specific
* Not task-specific

* Knowledge provides the required specificity:

Cognitive Architecture + Knowledge = Cognitive Model

[Lehman et al. 1997, also Anderson & Labiere 13398, Newell 1930]




Cognitivist Cognitive Architecture

Overall structure and organization of a cognitive system

* Essential Modules
* Essential relations between these modules
* Essential algorithmic and representational details in each module

[Sun 2007]

mem

Input-
outpu

/ /—L Cognltlve

Procedural — map

Episodic

Commitment to formalisms for

. Semanti
representation and processes C

memory < memo
[Langley 2005, Langley 2006, Langley et al. 2009] Dnv'ng Reward
englne PR g punish.

[GMU-BICA Architecture: Samsonovich 2005]



Emergent Cognitive Architecture

Emergent approaches focus on development

— From a primitive state

— To fully cognitive state, over the system’s lifetime




Emergent Cognitive Architecture

 Two different views of development
— Individual
— Social

* Two different theories of cognitive development

— Jean Piaget (1896-1980])

— Lev VWygotsky (1896-1934)




Emergent Cognitive Architecture

The cognitive architecture is the system’s phylogenetic configuration

— The basis for ontogenesis: growth and development

* Innate skills
* Core knowledge (cf. Spelke)

— A structure in which to embed mechanisms for

* Perception
* Action

* Adaptation
* Anticipation
* Motivation

.. Development of all these



Emergent Cognitive Architecture

Strong focus on

— Autonomy-preserving
anticipatory
adaptive
skill construction

— The morphology of the physical body
In which the architecture is embedded



Emergent Cognitive Architecture

The emergent approach rejects:

— Dualism between mind and body

— Functionalism that treats cognitive mechanisms
independently of the physical platform

* Computational functionalism

 Robotic functionalism



Desirable Characteristics of a
Cognitive Architecture



Desirable Characteristics

PHILOSOPHICAL PSYCHOLOGY, VOL. 17, NO. 3, SEPTEMBER 2004 5{ Routledge
BN Tovor s Francis Group

Realism

Behavioral Characteristics - Desiderata for cognitive architectures

Cognitive Characteristics _ Ron Sov

Functional Capabilities [Langley et al. 2009, Sun 2007]

Development [Krichmar & Edelman 2006, 2007; Vernon et al. 2016]

Dynamics



Desirable Characteristics

Realism [Sun 2004].

1. Ecological realism
2. Bio-evolutionary realism
3. Cognitive realism

4. Inclusiveness of prior perspectives



Desirable Characteristics

Concurrent conflicting goals

Ecological realism Everyday activities

Embodied

[Sun 2004]



Desirable Characteristics

Human intelligence reducible to

Bio-evolutionary realism _ ) _
model of animal intelligence

[Sun 2004]



Desirable Characteristics

Human psychology

Cognitive realism Human neuroscience

Philosophy

[Sun 2004]



Desirable Characteristics

Draw on older models

Prior perspectives Subsume older models

Supercede older models

[Sun 2004]



Desirable Characteristics

Act & React ...

Simple conceptual schemas

Behavioural Characteristics Simple weighing of alternatives
[Sun 2004]

Temporal sequence of actions

Gradually-learned routine behaviours
... trial-and-error adaptation

[Sun 2004]



Desirable Characteristics

Implicit bottom-up learning

Cognitive Characteristics Explicit symbalic learning
[Sun 2007]

Functional or physical modularity

[Sun 2004]



Desirable Characteristics

Cognitive architectures: Research issues and challenges

Recognition & categorization
Decision-making & choice
Perception & situation assessment
Prediction & monitoring

Problem solving & planning
Reasoning & belief maintenance
Execution & action

Interaction & communication
Remembering, reflection, & learning

Cognitive architectures:
Research, issues and
challenges

CONOO,WMP =

[Langley et al. 2009]



Desirable Characteristics

The importance of cognitive architectures ...

Perception
Categorization

Multiple representations
Multiple types of memory
Decision making
Reasoning

Planning

Problem solving
Meta-cognition
10.Communication
11.Action control and execution
12.Several types of learning

The importance of
Cogaitive.acchitectures:
An analysis based

On Clarion

CONODO,WMP =

[Sun 2007] f
The importance of the interconnectivity between these processes



Desirable Characteristics

PHILOSOPHICAL PSYCHOLOGY, VOL. 17, NO. 3, SEPTEMBER 2004 £Y Routledge

B\ Toviors Francs Group

Desiderata for cognitive architectures

RoN Sun

Biologically Inspired Cognitive Architectures g
& Z,

Volume 18, October 2016, Pages 116—127

|
o

2

Research article e —
Desiderata for developmenta ognitive architectures
v

David Vernon® & & Claes von Hofsten®, Luciano Fadiga® ¢
+ Show more

http://dx.doi.org/10.1016/j.bica.2016.10.004 Get rights and content



Desirable Characteristics

Development

Desideratum 1. Value systems and motives
Biologically Inspired Cognitive Architectures

Volume 18, October 2016, Pages 116—127

Desideratum 2. Physical embodiment

Desideratum 3. Sensorimotor contingencies

Research article

Desideratum 4. Perception Desiderata for developmental cognitive architectures
. . David Veron® & . & Claes von Hofsten®, Luciano Fadiga® ¢
Desideratum 5. Attention + Show more
http://dx.doi.org/10.1016/j.bica.2016.10.004 Get rights and content

Desideratum 6. Prospective action
Desideratum 7. Declarative and procedural memory

Desideratum 8. Multiple modes of learning
Desideratum 9. Internal simulation

Desideratum 10. Constitutive autonomy



Organizational decomposition
* Explicit inter-connectivity
* Representational formalism

* Algorithmic formalism

Cognition

Hybrid
Systems

Cognitivist Emergent

Systems Systems

Framework in which Phylogeny - basis for development
to embed knowledge

Innate skills & core knowledge
* Memories

* Memories
* Formalisms for learning

Formalism for autonomy
* Programming mechanism

Formalism for development



Example Cognitive Architectures

Cognitivist
Systems

Soar [Newell 1996]

EPIC [Kieras & Meyer 1997]
ICARUS [Langley 05, Langley 2006]
GLAIR [Shapiro & Bona 2009]
CoSy [Hawes & Wyatt 2008]



Example Cognitive Architectures

Emergent
Systems

ICub [Vernon et al. 2010]

Global Workspace [Shanahan 2006]
SASE [Weng 2004]

Darwin [Krichmar et al. 2003]
Cognitive Affective [Morse et al 2008]



Example Cognitive Architectures

COGNITION

Hybrid
Systems

CLARION [Sun 2007]

CRAM [Beetz et al. 2010]

ACT-R [Anderson et al. 2004]

ACT-R/E [Trafton et al. 201 3]

KHR [Burghart et al. 2009]

LIDA [Franklin et al. 2007/, Baars & Franklin 2009]
PACO-PLUS [Kraft et al. 2008]



>

Example Cognitive Architectures

surveys:

Biologically Inspired Cognitive Architectures Society, Comparative Repository of Cognitive Architectures,
http://bicasociety.org/cogarch/architectures.htm (25 cognitive architectures)

A Survey of Cognitive and Agent Architectures, University of Michigan, http://ai.eecs.umich.edu/cogarch0/
(12 cognitive architectures)

W. Duch, R. J. Oentaryo, and M. Pasquier. “Cognitive Architectures: Where do we go from here?”, Proc.
Conf. Artificial General Intelligence, 122-136, 2008. (17 cognitive architectures)

D. Vernon, G. Metta, and G. Sandini, "A Survey of Artificial Cognitive Systems: Implications for the
Autonomous Development of Mental Capabilities in Computational Agents", IEEE Transactions on
Evolutionary Computation, Vol. 11, No. 2, pp. 151-180, 2007. (14 cognitive architectures)

D. Vernon, C. von Hofsten, and L. Fadiga. "A Roadmap for Cognitive Development in Humanoid Robots",
Cognitive Systems Monographs (COSMOQS]), Vol. 11, Springer, 201 1. Chapter 5 and Appendix |

(20 cognitive architectures)

l. Kotseruba and J. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical
applications. Artificial Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020. (84 cognitive architectures)
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symbolic
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modeling
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SYMBOLIC

sub-processing

fully integrated

logic systems
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® AIS
® APEX

® COGNET
@® Companions
® Disciple
@ EPI

® ERE

® GLAIR

@ Homer

® ICARUS
® IMPRINT
® MAMID

® MAX

®
4
4
@
®
o
o
o
o

© ACT-R
© ADAPT
© ARCADIA
© ARS/SIMA

© CERA-CRANIUM
© CHARISMA
© CHREST

© CogPrime
© Copycat/Metacat
© DS

© DUAL

© DiPRA

© FORR

© GMU-BICA
@ ISAC

© Kismet

© LIDA

© MACSi

© MIDCA

© MLECOG

© NARS

© Novamente
© PolyScheme
© RALPH

® ART
Darwinian Neurodynamics

Recommendation
SPA

BECCA
MDB .
MicroPsi
SASE
Shruti
Subsumption

I. Kotseruba and J. Tsotsos. 40 years of

cognitive architectures: core cognitive
abilities and practical applications.

Artificial Intelligence Review, Vol. 53,

No. 1, pp. 17-94, 2020.
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I. Kotseruba and J. Tsotsos. 40 years of
cognitive architectures: core cognitive
abilities and practical applications.
Artificial Intelligence Review, Vol. 53,
No. 1, pp. 17-94, 2020.
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Core Cognitive Abilities

Perception A
Attention
Action selection

|. Kotseruba and J. Tsotsos. 40 years of cognitive architectures:
I\/Iemor‘y > core cognitive abilities and practical applications. Artificial

_ Intelligence Review, Vol. 53, No. 1, pp. 17-94, 2020.
Learning

Reasoning

Meta-cognition )

Prospection Not included in [Kotseruba and Tsotsos 2020]
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A Standard Model of the Mind

Laird, J. E., Lebiere, C., Rosenbloom, P.S. A standard model of the mind:
Toward a common computational framework across artificial intelligence,

cognitive science, neuroscience, and robotics. Al Magazine 38 (4):13-26,
2017.

Rosenbloom, P. S., Laird, J. E., and Lebiere, C. Précis of a ‘Standard Model of
the Mind’, Advances in Cognitive Systems, Vol. 5, pp. 1-4, 2017.

Stocco, A, Laird, J., Lebiere, C., and Rosenbloom, R. Empirical evidence from
neuroimaging data for a standard model of the mind. In: Kalish, C., Rau, M.,
Zhou, J., Rogers, T. T. (eds) Proceedings of the 40th Annual Meeting of the
Cognitive Science Society, pp. 1094-1099, 2018.



A Common Model of Cognition

AAAI 2018 Fall Symposium on
A Common Model of Cognition

018 AAA] Fall Symposium on ‘A Common Model of
the Cognition

A mind is a functional entity that can think, and thus support intelligent behavior. Artificial intelligence,
cognitive science, neuroscience, and robotics all contribute to our understanding of minds, although each

Home

draws from a different perspective. Artificial intelligence concerns building artificial minds, and thus cares
Organizing Committee most about how systems can be built that exhibit intelligent behavior. Cognitive science concerns
Call for Participation modeling natural minds, and thus cares most about understanding cognitive processes that yield human

thought. Neuroscience concerns the structure and function of brains, and thus cares most about how

Registration il ) . o - gt .
brains induce minds. Robotics concerns building and directing artificial bodies, and thus cares most about

Schedule how minds control such bodies.

2017 AAAI Fall Symposium

on a ‘Standard Model of the Will research across these disciplines ultimately converge on a single understanding of mind? This is a
Mind’ deep scientific question to which there is as yet no answer. However, there must at least be a single
2017 Schedule and Slides answer for cognitive science and neuroscience, as they both investigate the same mind, or narrow class

of minds, albeit at different levels of abstraction. Research that is inspired by natural systems also may fit
within this class of minds, particularly if it is slightly abstracted; but so too may research that has no such
aspiration yet still finds itself in the same neighborhood for functional reasons. This broader class
comprises what can be called human-like minds.

b o Our goal with this symposium is to engage the international research community in developing A
Common Model of Cognition; that is, a community consensus concerning the mental structures and
process implicated in human-like minds to the extent that such a consensus exists. The intent, at least for
the foreseeable future, is not to develop a single implementation or model of cognition by which
everyone concerned with human-like cognition would abide, or even a theory in which all of the details
are agreed to as correct. What is sought though is a statement of the best consensus given the
communitv’s current understandina of coanition. plus a sound basis for further refinement as more is



A Common Model of Cognition

" Artificial Intelligence / \

Robotics
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Declarative
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A Common Model of Cognition

© Artificial Intelligence / \

Soar, Sigma

Declarative
Long-term Memory

ACT-R, Clarion, LIDA

Procedural

Working M
Long-term Memory orking Memory

Leabra, Spaun

Robotics

4D/RCS, DIARC J




A Common Model of Cognition
e cf. Standard Model in particle physics:
* For human-like minds
— cumulative reference point ... combines what is known
- focus efforts to extend or revise

- Not intended to be complete theory / model / implementation

- Omissions: statement that a consensus is needed



A Common Model of Cognition

Hypothesis

“Cognitive architectures provide the appropriate computational
abstraction for defining a standard model”

Standard model is not itself a cognitive architecture



A Common Model of Cognition

Evaluate single components
Evaluate combinations of components
Make components openly available to the research community

Facilitate standard tests / testbeds



A Common Model of Cognition

Key aspects

— Structure and processing
- Memory and content

- Learning

— Perception

— Motor [action)

Declarative
Long-term Memory

Procedural

Long-term Memory Working Memory

Perception



Motor

Converts the symbol structures &
metadata into external action

Controlling body effectors

"No consensus as the the form this
should take in the standard model”

Declarative
Long-term Memory

Procedural

Long-term Memory Working Memory



A Common Model of Cognition

“The standard model ... remains incomplete ...
[and] is silent, for example, concerning

meta-cognition
emation

mental imagery

direct communication and learning across modules,
the distinction between semantic and episodic memaory

and mechanisms necessary for social cognition”



Operational Cognitive Architectures

System
Architecture

Software
Architecture

Hardware
Architecture

Mechanical
Architecture

Electrical
Architecture

Runtime
Architecture

Functional
Architecture

Component
Architecture

Computational
Architecture

implemented by mapped to executed by controls actuates



Paradigms of
Cognitive Science

Situation Model
Framework Cognitive
Architectures



The ZiF Research Group on

Cognitive behavior of humans,
animals, and machines:
Situation model perspectives

Cognitive Behavior of Humans, Animals, and Machines: Situation Model Perspectives 88 ZiF: Center for Interdisciplinary Research, University of Bielefeld, Germany.



The ZiF Research Group on

Cognitive behavior of humans,
animals, and machines: \
Situation model perspectives oible

Context-sensitive
Behaviour

Cognitive Behavior of Humans, Animals, and Machines: Situation Model Perspectives 89 ZiF: Center for Interdisciplinary Research, University of Bielefeld, Germany.



Marr’'s Hierarchy of Abstraction
(aka The Levels of Understanding Framework]

. 3
Computational Goal, logic, strategy, model
Theory

Loose coupling

Represen.tatlon I/O representation, transformation algorithm }

& Algorithm
Loose coupling
Hardware/Software Physical realization
Implementation )

D. Marr and T. Poggio. "From understanding computation to understanding neural circuitry", in E. Poppel, R. Held, and J. E. Dowling,
editors, Neuronal Mechanisms in Visual Perception, volume 15 of Neurosciences Research Program Bulletin, pages 470-488. 1977.

D. Marr. Vision. Freeman, San Francisco, 1982.

T. Poggio. The levels of understanding framework, revised. Perception, 41:1017-1023, 2012.

Situation Model Framework
All three levels of abstraction
Does not yet commit to a specific

computational model,
representation, or algorithm



Marr’'s Hierarchy of Abstraction
(aka The Levels of Understanding Framework]

“Trying to understand perception by studying only neurons is like trying to understand bird
flight by studying only feathers: it just cannot be done.
In order to understand bird flight, we have to understand aerodynamics;

only then do the structure of feathers and the different shapes of birds’ wings make sense”

Marr, D. Vision, Freeman, 1982.

\ e Pl

=t



Marr’'s Hierarchy of Abstraction
(aka The Levels of Understanding Framework]

Computational Goal, logic, strategy, model
Theory

Situation Model Framework

Loose coupling

Representation

) /O representation, transformation algorithm » Addresses all three levels of abstraction
& Algorithm

A

I Loose coupling Does not yet commit to a specific
computational model,
Al S e Physical realization representation, or algorithm
Implementation ) / ,

The goal of the Situation Model Framework is to set out in explicit terms
the assumptions — foundations — on which to build such a theory




Situation Model Framewaork

https://www.aboutcivil.org/pile-foundations-design-construction.html

Three Foundational Themes:
1. Control of action: integrative process in cognition

2. Complex behaviours emerge by scaffolding simpler
behaviours

3. Internal Attention is a prioritizing control mechanism:

Perception

Action Context

N

Action Scaffolding Internal

Memory . i
Control Behaviours Attention



Situation Model Framework

Action Scaffolding Internal
Control Behaviours Attention

N ) —
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—
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Scaffolding Behaviours
Internal Attention




Situation Model Framework

Joint perception-action representation

Abstract representation:
unencumbered by low-level

sensorimotor information
Behavioral Episodes

Object
Scene
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Situation Model Framework

"Intended Behavioural Outcome"
(cf. goal-directed nature of actions)

Perception of the action outcome

Behavioral Episodes
Captures both spatial and temporal aspects

Object
Scene
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Situation Model Framewaork

Two-system
Approach

Working

Memory &
Attention

Cognitive
Map




Situation Model Framework

Two-system

Approach

/

Two-system approach to thought and action



Situation Model Framewaork

Capacity limitation of working memory

& attentional control

Working \
Memory &
Attention



Situation Model Framewaork

Cognitive map: extended form of behavioural episode
(and hence joint action-perception representation
with both spatial and temporal characteristics)

/

Cognitive

Map



Two classes of behaviour:

1. Routine habitual
... handled by system 1

2. Actions requiring deliberation
... handled by system 2

Situation Model Framework

Two-system

Approach




Situation Model Framework

System 1

Two-system

- Retrieves n behaviour episodes

Approach

- Winner-take-all competition

- Executes the winner



Situation Model Framework

System 1

Two-system

- Retrieves n behaviour episodes

Approach

- Winner-take-all competition

- Executes the winner

But ...
Behavioural episodes are abstract
So...

Sensor and motor information —
is resolved in real-time.



System 1
- Retrieves n behaviour episodes
- Winner-take-all competition

- Executes the winner

But ...
Behavioural episodes are abstract
So ...

Sensor and motor information
is resolved in real-time.

Situation Model Framewaork

Two-system

Approach

System 2
Has additional mechanisms to
- Construct novel episodes
- Predict outcome using
internal simulation
(or enact in reality)

- Refine

- Assimilate in LTM



Situation Model Framewaork

System 1 System 2

TWD-System Has additional mechanisms

in working memory to

- Retrieves n behaviour episodes

Approach

- Winner-take-all competition
- Construct novel episodes
- Executes the winner
- Predict outcome using
internal simulation
(or enact in reality)
But ...
- Refine
Behavioural episodes are abstract
- Assimilate in LTM
So ...

Sensor and motor information - @
is resolved in real-time.



Situation Model Framewaork

System 1 System 2

Two-system

Reactive control of action Prospective control of action

Approach




Situation Model Framework

Two-system
Approach

Novel
Construction

Internal
Simulation

> Situation Model

Refinement

Behavioral Episodes
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Situation Model Framework

System 1 and 2 need efficient access to
behavioural episodes in long-term memory

Working

Memory &
Attention




Situation Model Framewaork

System 1 and 2 need efficient access to
behavioural episodes in long-term memory

Selective

Internal :
Declarative

Attention Long-term Memory

Working Memory

Procedural
Long-term Memory

Working

Memory &
Attention




Situation Model Framewaork

System 1 and 2 need efficient access to
behavioural episodes in long-term memory

= CONTEXT SENSITIVITY

Selective

Internal :
Declarative

Attention Long-term Memory

Procedural
Long-term Memory

Working

Memory &
Attention




Situation Model Framewaork

Mechanisms for
Internal simulation
Adaptivity (metacognition)

Declarative
Long-term Memory

Procedural
Long-term Memory

Working

Working Memory

Memory &
Attention




Situation Model Framework

Two-system
Internal Approach
Attention
Novel
Construction
Working
Memory Internal
Simulation
Meta-
cognition Refinement

Behavioral Episodes

Object
Scene
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Situation Model Framewaork

Cognitive
Map

Extended form of behavioural episode:

- Joint perception-action spatio-
temporal representation

- Causal link between scene, object,
action, outcome



Situation Model Framework

More disparate sources in memory:

- Episodic memory decoupled from
Cognitive autobiographical experience
Map

- Procedural memory of disparate skills

- Semantic memory that binds
elements in a cohesive narrative



Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention

Novel

Construction
Working
Memory Internal

Simulation
Meta-

cognition Refinement

Behavioral Episodes

Object
Scene
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Situation Model Framework

Mechanisms for
constructing, simulating, enacting, refining, and assimilating
behavioural episodes

Behavioural episode

Joint perception-action representation Object
Captures causal relationships between Scene

objects, scenes, actions, action outcomes




Situation Model Framework

. Process
Mechanisms for <

constructing, simulating, enacting, refining, and assimilating

Behavioural episode

Joint perception-action representation
Captures causal relationships between
objects, scenes, actions, action outcomes

Object
Scene

Computational
Theory

|

Representation
& Algorithm

|

Hardware/Software
Implementation




Situation Model Framework

Probehandeln
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Trial treatment: mental execution of an action or
consideration of alternative actions to reach a decision




Situation Model
Framework

Cognitive
Architectures



Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Memory Internal
Simulation
n oy . . . n Meta-
Cognition is effective action . Refinement

Behavioral Episodes

H. Maturana and F. Varela.
The Tree of Knowledge — @ @
The Biological Roots of Human Understanding.

NewScience Library, Boston & London, 1987
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Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Memory Internal
" . ] Simulation
Actions are directed to the future Meta- f
. . . HH Refinement
and must predict what is going Sl

to happen next."

Behavioral Episodes

Object
. . Scene
C. von Hofsten. An action perspective on motor

development. Trends in Cognitive Sciences,
8:266-272, 2004.
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Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Memory Internal
. Simulation
"Most neonatal behaviours are Meta- f
. . . i Refinement
prospective and flexible goal-directed Sl
actions"

Behavioral Episodes

Object
C. von Hofsten. Action, the foundation for cognitive

development. Scandinavian Journal of Psychology,
50:617-623, 2009.
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Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Memory Internal
" L. . Simulation
Cognitive development has to do with Meta- f
. . i Refinement
expanding the prospective control Sl
of actions."

Behavioral Episodes

Object
C. von Hofsten. Action in development. Scene

Developmental Science,
10(1):54-60, 2007.
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Situation Model Framework

Two-system Cognitive
"Expanding one’s Internal Approach Map
. . . Attention

repertoire of actions is Novel

. . Constructi
a powerful motivation, Working onsHHeten
overriding efficacy in achieving a goal" Memory el

Meta-
cognition Refinement
L

’f
“ Behavioral Episodes
i p
- Object
D. Vernon, C. von Hofsten, and L. Fadiga. A Roadmap Scene

for Cognitive Development in Humanoid Robots,
Springer, Berlin, 2010.
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Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
"a cognitive agent Memory Uizl
. . Simulation
continually anticipates the need to act Meta-
. . . e Refinement
and it anticipates the outcome of those Sl
actions"

Behavioral Episodes

Object
D. Vernon, C. von Hofsten, and L. Fadiga. A Roadmap

for Cognitive Development in Humanoid Robots,
Springer, Berlin, 2010.
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Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene
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Scaffolding Behaviours

Internal Attention

Sensory-motor Theory

Actions: reactive responses
to sensory stimuli

Perception and action
use distinct and separate
representational frameworks




Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention

Ideo-motor Theory

Action: the result of
internally-generated goals

A. Stock and C. Stock. A short history of ideo-motor action.
Psychological research, 68(2—3):176— 188, 2004




Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention

Novel

Construction
Working
Memory Internal

Simulation
Meta-

cognition Refinement

Behavioral Episodes

Object
Scene
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goal-directed movement depends on
anticipation of the sensory consequence
of accomplishing the intended action

ldeo-motor Theory

The selection and control of a

A. Stock and C. Stock. A short history of ideo-motor action.
Psychological research, 68(2—3):176— 188, 2004




Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention

Novel

Construction
Working
Memory Internal

Simulation
Meta-

cognition Refinement

Behavioral Episodes

Object
Scene
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intention-directed goal-focussed action

with the specific movements being

Ideo-motor Theory

Select prospectively-guided

adaptively controlled
as the action is executed

A. Stock and C. Stock. A short history of ideo-motor action.
Psychological research, 68(2—3):176— 188, 2004




Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention

ldeo-motor Theory

Perception and action share a
common representational framework

A. Stock and C. Stock. A short history of ideo-motor action.
Psychological research, 68(2—3):176— 188, 2004




Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention

Theory of Event Coding

Event Code 1

©
@

N
Event Code 2

Sensory Systems Common Coding System Motor Systems

B. Hommel, J. Musseler, G. Aschersleben, and W. Prinz.
The theory of event coding (TEC): A framework for
perception and action planning. Behavioral and
Brain Sciences, 24:849-937, 2001.




Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention

Ideo-motor Theory

Goal Trigger Hypothesis

B. Hommel, J. Musseler, G. Aschersleben, and W. Prinz.
The theory of event coding (TEC): A framework for perception
and action planning. Behavioral and Brain Sciences,
24:849-937, 2001.




Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention

Object-Action Complex

N. Kriiger, C. Geib, J. Piater, R. Petrickb, M. Steedman,
F. Worgotter, A. Ude, T. Asfour, D. Kraft, D. Omrcen,
A. Agostini, and R. Dillmann. Object—action complexes:
Grounded abstractions of sensory—motor processes.
Robotics and Autonomous Systems,
59:740-757, 2011.




Situation Model Framework

Internal
Attention

Working
Memory

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention

Abstract Representations

"Once a goal has been established,

the abstract kinematic structure of a

movement and the final state of the
end effector (e.g., a hand)

may be planned"

D. McNamee and D. M. Wolpert. Internal models in
biological control. Annual Review of Control, Robotics,
and Autonomous Systems, 2:339-364, 2019.




Situation Model Framework

Internal Simulation &
. ] Two-system Cognitive
Episodic Memory Internal Approach Map
Attention
Novel
Construction
Working
Memo Internal
Simulation
Meta-
cognition Refinement
Memory Memory

Declarative Procedural
Memory Memory
Semantic Episodic
Memory Memory

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention




Episodic Memory

Past events are
reconstructed ...




Episodic Memory

The Future

Past events are To allow the agent
reconstructed ... to pre-experience the future




Episodic Future Thinking

The Future

Past events are To allow the agent
reconstructed ... to pre-experience the future

C. M. Atance and D. K. O'Neill, “Episodic future thinking,” Trends in Cognitive Sciences, val. 5, no. 12, pp. 533-539, 2001.




Constructive Episodic Simulation Hypothesis

The Future

Past events are To allow the agent
reconstructed ... to pre-experience the future

D. L. Schacter and D. R. Addis, “The cognitive neuraoscience of constructive memory: Remembering the past and imagining the
future,” Philosophical Transactions of the Royal Society B, val. 362, pp. 773-786, 2007.




Situation Model Framework

Internal Simulation &
Episodic Memory

The Future

Internal
Attention

Working
Memo

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Action Control

Behavioral Episodes

Object
Scene

Scaffolding Behaviours

Internal Attention




Situation Model Framework

“It’s a poor sort of memory

that only works backwards”
Remarks of the White Queen to Alice
in Lewis Carroll’s Through the Looking Glass

Memory is Prospective

Internal
Attention

Working
Memo

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Action Control

Behavioral Episodes

Object
Scene

Scaffolding Behaviours

Internal Attention




Situation Model Framework

“It’s a poor sort of memory
that only remembers what

Two-system Cognitive
Internal Approach M
has actually happened” Attention PP ®
Remarks by Tom Ziemke during a talk at Linkdping University Novel
Construction
Working

Memo Internal
Simulation
Meta-
cognition Refinement

Behavioral Episodes

Object
Scene

Memory is Constructive

Action Control
Scaffolding Behaviours
Internal Attention



Internal Simulation &
Episodic and Procedural Memory

Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working

Memo Internal
Simulation
Meta-
cognition Refinement

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention




Situation Model Framework

Simulation Hypothesis

Efference copy

G. Hesslow. Conscious thought as simulation of behaviour and
perception. Trends in Cognitive Sciences, 6(6):242-247, 2002.
G. Hesslow. The current status of the simulation theory
of cognition. Brain Research, 1428:71-79, 2012.

Internal
Attention

Working
Memo

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Behavioral Episodes

Object
Scene

Action Control
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Internal Attention




Situation Model Framework

Internal Models

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Memo Internal
Pe rcept Simulation
3 Meta-
cognition Refinement

Forward model
Maps actions to percepts:
predicts the outcome of an action

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention




Situation Model Framework

Internal Models

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
. Working
ACt IoNn Memo Internal
Pe rcept Simulation
Percept e i
cognition Refinement

Forward model
Maps actions to percepts:
predicts the outcome of an action

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention




Situation Model Framework

Internal Models

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Memo Internal
Perce pt ACtion Simulation
E Meta-
cognition Refinement

Inverse model
Maps percepts to motor commands

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention



Situation Model Framework

Internal Models

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working
Goa l Memo Internal
———> Action Simulation
Percept Veta. |
cognition Refinement

Inverse model
outputs the motor commands
necessary to achieve a goal

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention




Internal Models

Hidden Markov Model

/

Observed { Y2 Ve Vi Vi1

Hidden {XI—Z > X1 > X, > Xy

ey

Actions { Uy U,y u, Upy g

System states
(world states)

Sensory states
(observations)

Situation Model Framework

Two-system Cognitive
Internal Approach Map
Attention
Novel
Construction
Working

Memo Internal
Simulation
Meta-
cognition Refinement

Behavioral Episodes

Object
Scene

Action Control
Scaffolding Behaviours
Internal Attention



7

Infer an outcome ...

Action
Percept Percept

Forward model

Internal Models

N

... from an initial state

D. McNamee and D. M. Wolpert. Internal models in
biological control. Annual Review of Control, Robotics,
and Autonomous Systems, 2:339-364, 20189.

Prw (X1 X0, 1)
S

and an action

Situation Model Framework

Internal
Attention

Working
Memo

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
Simulation

Refinement

Cognitive
Map

Action Control

Behavioral Episodes

(%)
—
=
.2
>
©
<
[0
m
0o
=
e
[e]
b
©
Q
)

Object
Scene

Internal Attention




Situation Model Framework

Internal Models

Two-system Cognitive
Internal Approach Map
Attention
Piny (01 g)
Construction
/ \ Working
Infer an action ... ... from a "pseudo-observation" e Si':ﬁ;:?c:n
of desired outcome Meta-
cognition Refinement

Goal
Action
Percept ——>|

Inverse model

Behavioral Episodes

Object
Scene

D. McNamee and D. M. Wolpert. Internal models in
biological control. Annual Review of Control, Robotics,
and Autonomous Systems, 2:339-364, 20189.
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Situation Model Framework

Internal Simulation &
. Two-system Cognitive
Theory of Mind Internal Approach Map
Attention
Novel
Vo Construction
. - j_\) Working
Ega J Memo Internal
\_)\/ ‘ D Simulation
oO E[—]a Meta- _
o cognition Refinement
’
\ /I <

Behavioral Episodes

Object
Scene

(g@ N}qx

////Q——D‘W e

Action Control
Scaffolding Behaviours
Internal Attention




Situation Model Framework

Internal Simulation &

. Two-system Cognitive
Theory of Mind Internal Approach Map
Attention
Novel
Construction
Working

Memo Internal
Simulation
Cognitivist v/ Meta-
E t X oas 1
mergen cognltlon Refinement

Behavioral Episodes

Object
Scene

////Q——D‘W e

Action Control
Scaffolding Behaviours
Internal Attention




Situation Model Framework

Internal Simulation &
Doing Nothing

"the brain --- one's mind --- is
automatically busy with extrapolation
of future events and ... constructing
alternative hypothetical behavioral patterns
in order to be ready for what may
happen next"

D. H. Ingvar. “Hyperfrontal distribution of the cerebal grey matter flow in
resting wakefulness; on the functional autonomy of the conscious
state". Acta Neurologica Scandinavica, 60(1):12-25, 1979.

Internal
Attention

Working
Memo

Meta-
cognition

Two-system
Approach

Novel
Construction

Internal
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Global Workspace
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BG Basal Ganglia (action selection)
AC Association Cortex
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Higher-order

sensorimotor loop

Internal simulation
WORLD

M. P. Shanahan. Cognition, action selection, and inner rehearsal. In Proceedings IJCAlI Workshop on Modelling Natural Action Selection, pages 92-399, 2005.

M. P. Shanahan. A cognitive architecture that combines internal simulation with a global workspace. Consciousness and Cognition, 15:433-449, 2006.
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Global Workspace

Global workspace model:
sequence of states emerge from multiple competing and cooperating parallel processes

Parallel Unconscious
Specialist Processes

Global Workspace



Global Workspace

Global workspace model:
sequence of states emerge from multiple competing and cooperating parallel processes
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K. Kawamura, S. M. Gordon, P. Ratanaswasd, E. Erdemir, and J. F. Hall. Implementation of cognitive control for a humanoid robot. International
Journal of Humanoid Robotics, 5(4):547-586, 2008.
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Normally, the First-order Response Agent (FRA)
produces reactive responses to sensory triggers
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First-order Response Agent (FRA)

is also responsible for executing tasks
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When a task is assigned by a human,

the FRA retrieves the skill from procedural memory |SAC
in LTM that corresponds to the skill described in the

task information
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It then places it in the WMS as chunks along with

the current percept
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The Activator Agent then executes it, suspending
execution whenever a reactive response is required |SAC
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If the FRA finds no matching skill for the task, the

Central Executive Agent takes over
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Recalls from episodic memory past experiences and
behaviours that contain information similar to the |SAC
current task
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Select a behaviour-percept pair,

based on the current percept in the SES,

its relevance, and the likelihood of successful
execution as determined by internal simulation

T

—

Perceptual
Agents

Activator Agents

Arm Agent
Head Agent
Hand Agent

First-Order
Response
Agent

/

y ‘|| Attention

J| Network

Working
Memory
System

Long-Term
Memory

Cognitive
Control &
Reflection

Central
Executive
Agent

Internal
Rehearsal

¢ Self Agent

Goals &
Motivation

Intention
Agent

frd

Affect
Agent

VAN

Semantic

Memory

Episodic
Memory

-

M - e e . - ————————




This is then placed in working memory and the

Activator Agent executes the action
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M. Beetz, D. Jain, L. Mosenlechner, and M. Tenorth.
Towards Performing Everyday Manipulation Activities.
Robotics and Autonomous Systems, 58(9):1085— 1095, 2010.
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Internal Simulation
[Kunze and Beetz 2017]




Internal Simulation
[Kunze and Beetz 2017]
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Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models for execution and recognition [HAMMER]). Robotics and Autonomous Systems,
54:361 - 369, 2006.

Cognitive Behavior of Humans, Animals, and Machines: Situation Model Perspectives

191

Center for Interdisciplinary Research, University of Bielefeld, Germany.
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192 Center for Interdisciplinary Research, University of Bielefeld, Germany.

Cognitive Behavior of Humans, Animals, and Machines: Situation Model Perspectives
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Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models for execution and recognition [HAMMER]). Robotics and Autonomous Systems,
54:361 - 369, 2006.



HAMMER

The choice of inverse/forward model
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(M-P Mapping) predicted outcome is to the desired one
v
,, Prediction
Verification
'
Internal
Goal > Predictive Attention
inverse Model P — A
¢ I *| (P-M Mapping) Selection

Internal Simulation

Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models for execution and recognition [HAMMER]). Robotics and Autonomous Systems,
54:361 - 369, 2006.
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The choice of inverse/forward model
Predictive pair is made by an internal attention
Forward Mgdel B process based on how close the
(M-P Mapping) predicted outcome is to the desired one
v
,, Prediction
Verification
'
Internal
Goal > Predictive Attention
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¢ I *| (P-M Mapping) Selection

Internal Simulation

Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models for execution and recognition [HAMMER]). Robotics and Autonomous Systems,
54:361 - 369, 2006.



HAMMER

Provides for hierarchical composition of primitive actions
into more complex sequences
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Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models for execution and recognition [HAMMER]). Robotics and Autonomous Systems,
54:361 - 369, 2006.



Internal Simulation
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D. Wolpert, R. C. Miall, and M. Kawato. Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9):338-347/, 19398.
197 Center for Interdisciplinary Research, University of Bielefeld, Germany.
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Challenges for cognitive architectures
and the situation model framework

Challenges for cognitive architectures
and the situation model framework

Decomposition, reconstruction, and recombination of behavioural episodes
Hierarchical behavioural episodes

Networks of behavioural episodes

Multiple levels of abstraction in internal simulation

Multiple timescales in internal simulation

Situation models vs. cognitive maps

Context sensitivity: what criteria are used for attention?

Autonomy: extrinsic vs. intrinsic goals



Opportunities

Episodic memory and episodic future
thinking can be modulated by
semantic memory

D. L. Schacter, D. R. Addis, D. Hassabis, V. C. Martin, R. N. Spreng, and K. K. Szpunar,
“The future of memory: Remembering, imagining, and the brain,” Neuron, vol. 76,
pp. 677-694, 2012.
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1 Please note our announcement
concerning Coronavirus / Covid 19.
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Answering Questions about your Own Experience
t=58 t=59 t=60

LOOK_LEFT MOVE_FORWARD MOVE_RIGHT .
a

-
3
)
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L s :
1-layer LSTM Did this episode end well

T (r = +10), or badly (r = -10)?

Stephen Clark, “Grounded Language Learning in Virtual Environments”, Dagstuhl Seminar 19021: Joint Processing of
Language and Visual Data for Better Automated Understanding, January 2019.
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Deep Image Captioning and Image Recall
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J. Mao, W. Xu, Y. Yang, Z. Huang, and A. Yuille. Deep Captioning with Multimodal Recurrent Neural Networks (M-RNN). ICLR 2015.



Alternative Architecture

Embedding  Recurrent  Multimodal Softmax
1
. . | I
Single embedding I l I
layer I R _ . :
Wetart - g " " _:_’ Wi
L E } ____________ 1
y v Time
Wl — > > P> — W)
l. \ 4
Standard RNN :
recurrence
A 4 l
w, —> > > > —— Wend
A
Image —— | onn

\ CNN uses ResNet

A. K. Gebreselasie. Towards a Multimodal Hetero-associative Memory based on a deep image captioning model, Research Report, Carnegie Mellon University Africa, 2020.



Multimodal Hetero-associative Memory
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A. K. Gebreselasie. work in progress, Carnegie Mellon University Africa, 2020.
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Joint Episodic-Procedural Memory

[D.Vernon, M.Beetz, and G.Sandini. Prospection in cognitive robotics: The case for joint episodic-procedural memory. Frontiers in Robotics and Al, 2(Article 19):1-14, 2015.]



Challenges for cognitive architectures
and the situation model framework

Challenges for cognitive architectures
and the situation model framework

1. Decomposition, reconstruction, and recombination of behavioural episodes
2. Hierarchical behavioural episodes

3. Networks of behavioural episodes

4. Multiple levels of abstraction in internal simulation

9. Multiple timescales in internal simulation

6. Situation models vs. cognitive maps

7. Context sensitivity: what criteria are used for attention?

8. Autonomy: extrinsic vs. intrinsic goals

It all hinges on the perceptuo-motor representation ... the behavioural episode



Situation Model Framework
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Thank you for your attention!

Thanks again to the ZIF

(Special thanks to Helge, Werner, Josefine, and Shiau-Chuen)
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