Difference between revisions of "Cognitive Robotics Lecture Schedule"

From David Vernon's Wiki
Jump to: navigation, search
 
(4 intermediate revisions by the same user not shown)
Line 104: Line 104:
 
| 11
 
| 11
 
|Robot arms I
 
|Robot arms I
|Robot programming. Description of Object Pose with Homogenous Transformations. Robot Programming by Task Specification  <!-- Denavit-Hartenberg specifications. Robot kinematics. -->
+
|Robot programming. Description of object pose with homogenous transformations. Robot programming by frame-based task specification.
 
|<!-- Lynxmotion 5DoF arm, Arduino interface -->
 
|<!-- Lynxmotion 5DoF arm, Arduino interface -->
 
|<!-- Arduino sketch programs for Lynxmotion-->
 
|<!-- Arduino sketch programs for Lynxmotion-->
Line 113: Line 113:
 
| 12
 
| 12
 
|Robot arms II
 
|Robot arms II
|Analytic inverse kinematics. Iterative approaches. Kinematic structure learning.  Kinematics structure correspondences.
+
|Robot programming by frame-based task specification <!-- Analytic inverse kinematics. Iterative approaches. Kinematic structure learning.  Kinematics structure correspondences. -->
|Lynxmotion 5DoF arm, Arduino interface
+
|<!-- Lynxmotion 5DoF arm, Arduino interface -->
|Arduino sketch programs for Lynxmotion
+
|<!-- Arduino sketch programs for Lynxmotion -->
|Paul (1981), Chapter 3.
+
|[http://vernon.eu/04-801/04-801_Cognitive_Robotics_12_Robot_Arms_II.pdf Lecture 12 Slides]. Paul (1981), Chapters 1 & 2. Vernon (1991), Sections 8.1-8.4.<!-- Paul (1981), Chapter 3. -->
|Move end-effector along various paths in Cartesian frame of reference
+
|<!-- Move end-effector along various paths in Cartesian frame of reference -->
 
|- style="vertical-align: top;"
 
|- style="vertical-align: top;"
 
| Tues. 28 Feb.
 
| Tues. 28 Feb.
 
| 13
 
| 13
 
|Robot arms III
 
|Robot arms III
|Robot manipulation. Frame-based task specification. Vision-based pose estimation.
+
|<!-- Vision-based pose estimation. --> Denavit-Hartenberg representation. Forward kinematics of a manipulator.  
 
|Lynxmotion 5DoF arm, Arduino interface  
 
|Lynxmotion 5DoF arm, Arduino interface  
 
|Arduino sketch programs for Lynxmotion
 
|Arduino sketch programs for Lynxmotion
|Vernon (1991), Sections 8.1-8.4.
+
|[http://vernon.eu/04-801/04-801_Cognitive_Robotics_13_Robot_Arms_III.pdf Lecture 13 Slides].  
|Compute the pose of a light cube
+
|<!-- Compute the pose of a light cube -->
 
|- style="vertical-align: top;"
 
|- style="vertical-align: top;"
 
| Thurs. 2 Mar.
 
| Thurs. 2 Mar.
 
| 14
 
| 14
 
| Robot arms IV
 
| Robot arms IV
| Programming by demonstration. Language-based programming.  
+
| <!-- Programming by demonstration. Language-based programming. --> Inverse kinematics. From forward and inverse kinematics to internal simulation.  Hesslow's simulation hypothesis.  HAMMER.
 
| Lynxmotion 5DoF arm, Arduino interface
 
| Lynxmotion 5DoF arm, Arduino interface
| Arduino sketch programs for Lynxmotion
+
| [http://www.vernon.eu/downloads/arduino-1.8.1-windows.exe Arduino 1.8.1 for Windows]
| Vernon (1991), Sections 8.1-8.4
+
[http://www.vernon.eu/downloads/inverse_kinematics_demo.ino Arduino inverse kinematics demo sketch]
| Implement a program to move light cube from one position/pose to another position/pose
+
[http://www.vernon.eu/downloads/CDM21224_Setup.exe CDM21224 COM port on USB.exe]
 +
| [http://vernon.eu/04-801/04-801_Cognitive_Robotics_14_Robot_Arms_IV.pdf Lecture 14 Slides]. [http://vernon.eu/04-801/AbuQassem_et_al_2010.pdf Abu Qassem et al (2010)]. [http://vernon.eu/04-801/Gan_et_al_2005.pdf Gan et al (2005)].  
 +
| <!-- Implement a program to move light cube from one position/pose to another position/pose -->  [http://www.vernon.eu/04-801/04-801_Assignment_3.pdf Assignment 3: Robot Manipulation]
 
|}
 
|}
  

Latest revision as of 06:17, 3 March 2017

Mini 1: Cognitive Robotics: Foundations

Date Lecture Topic Material covered Required hardware Required software Reading Homework exercises
Tues. 17 Jan. 1 Introduction Motivation. Goals of the course. Syllabus and lecture schedule. Course operation. Industrial requirements for cognitive robots. Artificial cognitive systems. Cognitivist, emergent, and hybrid paradigms in cognitive science. Autonomy. AI and cognition in robotics. Software development tools for assignments. None None Lecture 1 Slides. Vernon (2014), Chapters 1, 2, and 4. Install software tools and run example assignment0 programs.
Thurs. 19 Jan. 2 Robot  vision I Computer vision. Optics, sensors, and image formation. Image acquisition. Fundamentals of image processing. Segmentation and edge detection. Introduction to OpenCV. USB camera OpenCV Lecture 2 Slides. Vernon (1991), Sections 2.2.1, 2.2.2, 3.1, 4.1.4, 4.2.1, 5.1, 5.3.1. Image acquisition and image processing using OpenCV
Tues. 24 Jan. 3 Robot  vision II Hough transform: line, circle, and generalized transform; extension to codeword features. USB camera OpenCV Lecture 3 Slides. Vernon (1991), Sections 5.2, 6.4. Assignment 1: Object detection, localization, and pose estimation using the Hough transform
Thurs. 26 Jan. 4 Robot  vision III Colour segmentation. Colour histogram intersection and back-projection. USB camera OpenCV Lecture 4 Slides. Hanbury 2002. Swain and Ballard 1991.
Tues. 31 Jan. 5 Robot  vision IV Homogeneous coordinates and transformations. Perspective transformation. Camera model and inverse perspective transformation. USB camera OpenCV Lecture 5 Slides. Vernon (1991), Section 8.6, 9.4.2. Dawson-Howe and Vernon (1995). OpenCV documentation on camera calibration.
Thurs. 2 Feb. 6 Mobile robots I Types of mobile robots. The challenge of robot navigation. Wheeled locomotion. Kinematics of a two-wheel differential drive robot. Inverse kinematics. Lecture 6 Slides. Vernon (2009).
Tues. 7 Feb. 7 Mobile robots II The position estimation problem. Relative position estimation. Odometry-based navigation. Absolute position estimation. Combined position estimation. Lecture 7 Slides.
Thurs. 9 Feb. 8 Mobile robots III Closed-Loop Control. Go-to-position problem. Divide and conquer controller. MIMO controller. Cozmo Robot. Python Cozmo SDK. Anki Cozmo mobile robot Anki Cozmo SDK Lecture 8 Slides. Python tutorial. Cozmo SDK API.
Tues. 14 Feb. 9 Mobile robots IV Path planning. The search problem in AI. Path planning as a search problem. Breadth-First Search (BFS): The Wavefront Algorithm. Depth-First Search (DFS). Heuristic Search. Greedy Search. A* Search. Anki Cozmo mobile robot Anki Cozmo SDK Lecture 9 Slides. Assignment 2: Mobile robot locomotion
Tues. 16 Feb. 10 Mobile robots V The problem of autonomous navigation. Defining the system. The challenge of uncertainty. Architectures for autonomy. The Sense-Plan-Act architecture. The Reactive architecture. The Hybrid architecture. Lecture 10 Slides.
Tues. 21 Feb. 11 Robot arms I Robot programming. Description of object pose with homogenous transformations. Robot programming by frame-based task specification. Lecture 11 Slides. Paul (1981), Chapters 1 & 2. Vernon (1991), Sections 8.1-8.4.
Thurs. 23 Feb. 12 Robot arms II Robot programming by frame-based task specification Lecture 12 Slides. Paul (1981), Chapters 1 & 2. Vernon (1991), Sections 8.1-8.4.
Tues. 28 Feb. 13 Robot arms III Denavit-Hartenberg representation. Forward kinematics of a manipulator. Lynxmotion 5DoF arm, Arduino interface Arduino sketch programs for Lynxmotion Lecture 13 Slides.
Thurs. 2 Mar. 14 Robot arms IV Inverse kinematics. From forward and inverse kinematics to internal simulation. Hesslow's simulation hypothesis. HAMMER. Lynxmotion 5DoF arm, Arduino interface Arduino 1.8.1 for Windows

Arduino inverse kinematics demo sketch CDM21224 COM port on USB.exe

Lecture 14 Slides. Abu Qassem et al (2010). Gan et al (2005). Assignment 3: Robot Manipulation


Mini 2: Cognitive Robotics: Principles and Practice

Date Lecture Topic Material covered Required hardware Required software Reading Homework exercises
TBD 1 Cognitive architectures I Role and requirements; cognitive architecture schemas; example cognitive architectures including Soar, ACT-R, Clarion, LIDA, and ISAC. The Standard Model. Vernon (2014) Chapter 3. Chella et al. (2013). Scheutz et al. (2013). Vernon et al. (2016). Group discussion on which cognitive architectures are suitable for cognitive robotics
TBD 2 Cognitive architectures II CRAM: Cognitive Robot Abstract Machine. CRAM Plan Language (CPL). KnowRob knowledge processing and reasoning CRAM Beetz et al. (2010) CRAM test programs
TBD 3 Cognitive architectures III Knowledge representation, processing, and reasoning. KnowRob and OpenEASE Beetz et al. (2015) OpenEASE test programs
TBD 4 Learning and development I Supervised, unsupervised, and reinforcement learning. Hebbian learning. MaxHebb library Harmon and Harmon (1997) Hebbian learning
TBD 5 Learning and development II Predictive sequence learning (PSL). Anki Cozmo mobile robot Anki Cozmo SDK, PSL library Sun and Giles (2001). Billing et al. (2011, 2016). PSL test programs
TBD 6 Learning and development III Learning from demonstration Anki Cozmo mobile robot Anki Cozmo SDK, PSL library Vernon (2014), Chapters 6 & 8. Billard et al. (2008). Argall (2009). PSL test programs
TBD 7 Learning and development IV Cognitive development in humans and robots. Value systems for developmental and cognitive robots. Vernon (2014), Chapters 6 & 9. Lungarella et al. (2003). Asada et al. (2009). Cangelosi and Schlesinger (2015), Chapters 1 & 2. Merrick (2016). Vernon et al. (2016).
TBD 8 Memory and Prospection Declarative vs. procedural memory. Semantic memory. Episodic memory Anki Cozmo mobile robot Anki Cozmo SDK, CINDY library, OpenCV Vernon (2014), Chapter 7. Implementation of episodic memory on Cozmo
TBD 9 Internal simulation I Episodic future thinking. Forward and inverse models. Internal simulation hypothesis, Internal simulation with PSL Anki Cozmo mobile robot Anki Cozmo SDK, PSL library Vernon (2014), Chapter 8. Billing et al. (2016). PSL test programs
TBD 10 Internal simulation II HAMMER cognitive architecture Boost, Imperial College London HAMMER library Demiris and Khadhouri (2006). Sarabia et al. (2011). HAMMER tutorial using the ICL library
TBD 11 Social interaction I Joint action. Joint attention. Shared intention. Shared goals. Perspective taking. Theory of mind. Kinect RGB-D sensor Ubuntu 14.04, ROS, Imperial College London Perspective Taking library Vernon (2014), Chapter 9. Fisher and Demiris 2016. Perspective taking using the ICL library.
TBD 12 Social interaction II Action and intention recognition. Embodied cognition. Humanoid robotics. Kinect RGB-D sensor Ubuntu 14.04, ROS, Imperial College London Perspective Taking library. Vernon (2014), Chapter 9. Perspective taking using the ICL library
TBD 13
14

Back to Cognitive Robotics