Difference between revisions of "Cognitive Robotics Resources"

From David Vernon's Wiki
Jump to: navigation, search
(Websites)
(Datasets)
(30 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[[File:new.jpg]] signifies a recently added item
  
== Definitions of Cognition ==
+
== What is Cognition? ==
  
 
[http://www.vernon.eu/euCognition/definitions.htm 42 definitions of cognition] ... it has proved difficult to define cognition: read Aaron Sloman's argument that it isn't worth trying (go to the end of the article) <BR>
 
[http://www.vernon.eu/euCognition/definitions.htm 42 definitions of cognition] ... it has proved difficult to define cognition: read Aaron Sloman's argument that it isn't worth trying (go to the end of the article) <BR>
[http://www.vernon.eu/publications/14_Vernon_Cognitive_System.pdf A definition of a cognitive system] from the [http://www.springer.com/computer/image+processing/book/978-0-387-30771-8 Springer Reference Guide to Computer Vision]
+
[http://www.vernon.eu/publications/14_Vernon_Cognitive_System.pdf A definition of a cognitive system] from the [http://www.springer.com/computer/image+processing/book/978-0-387-30771-8 Springer Reference Guide to Computer Vision] <BR>
 +
[https://www.cell.com/current-biology/pdf/S0960-9822(19)30614-1.pdf What is Cognition?] in Current Biology 29, R603-R622, 2019 <BR>
 +
[http://vernon.eu/publications/2021_Sandini_et_al.pdf Cognitive Robotics], Sandini et al., in Encyclopedia of Robotics, M. Ang, O. Khatib, and B. Siciliano (Eds.), Springer, Berlin, Heidelberg, in press.
 +
<BR>
  
 
== Robots ==
 
== Robots ==
  
 
[https://robots.ieee.org/ IEEE Guide to the World of Robots]
 
[https://robots.ieee.org/ IEEE Guide to the World of Robots]
 +
 +
== Symposia and Workshops ==
 +
 +
[[File:new.jpg]] [https://visca.engin.umich.edu/ Virtual International Symposium on Cognitive Architecture (VISCA 2021)], with videos and slides, including a session on robot cognitive architectures.
 +
<BR>
 +
[[File:new.jpg]] [https://transair-bridge.org/workshop-2021/ Cognitive Architectures for Robot Agents], with videos.
 +
[http://ifrr.org/cognitive-robotics International Foundation for Robotics Research Colloquium on Cognitive Robotics], 8 October 2020;  the video proceedings are [https://www.youtube.com/watch?v=VKB9m4hOjlc&feature=youtu.be here] <BR>
 +
[http://www.aicworkshopseries.org/ AIC - Artificial Intelligence and Cognition International Workshop Series]
  
 
== Cognitive Architectures ==
 
== Cognitive Architectures ==
Line 30: Line 42:
  
 
<!-- ==== Hybrid ==== -->
 
<!-- ==== Hybrid ==== -->
 +
 +
MECA [https://www.sciencedirect.com/science/article/pii/S2212683X17301068#:~:text=Basically%20MECA%20promotes%20an%20hybridism,conceptual%20spaces%20and%20grounded%20cognition The Multipurpose Enhanced Cognitive Architecture (MECA)] <BR>
 +
MECA [https://www.sciencedirect.com/science/article/pii/S1877050918300267 An Overview of the Multipurpose Enhanced Cognitive Architecture (MECA)]<BR>
 +
iCub [https://www.frontiersin.org/articles/10.3389/frobt.2016.00024/full The iCub Software Architecture: Evolution and Lessons Learned]; not a cognitive architecture but relevant to the system architecture / software architecture aspects relevant to the implementation of a cognitive architecture. <BR>
 +
iCub [https://www.frontiersin.org/articles/10.3389/frobt.2018.00022/full iCub-HRI: A Software Framework for Complex Human–Robot Interaction Scenarios on the iCub Humanoid Robot] ibid. <BR>
  
 
=== Websites ===
 
=== Websites ===
  
 
'''Symbolic / Cognitivist''' <BR>
 
'''Symbolic / Cognitivist''' <BR>
http://www.sfu.ca/~jbmaxwel/MusiCog/index.html  
+
[http://www.sfu.ca/~jbmaxwel/MusiCog/index.html MusiCog]
 
<P>
 
<P>
'''Emergent'''
+
'''Emergent'''<BR>
 
[http://compneuro.uwaterloo.ca/research/spa.html SPA (Semantic Pointer Architecture)] in [https://www.nengo.ai/nengo-spa/user-guide/spa-intro.html Nengo]
 
[http://compneuro.uwaterloo.ca/research/spa.html SPA (Semantic Pointer Architecture)] in [https://www.nengo.ai/nengo-spa/user-guide/spa-intro.html Nengo]
 
</P>
 
</P>
'''Hybrid'''
+
'''Hybrid'''<BR>
 
[http://act-r.psy.cmu.edu/ ACT-R]<BR>
 
[http://act-r.psy.cmu.edu/ ACT-R]<BR>
[http://cram-system.org/cram CRAM]<BR>
 
 
[https://sites.google.com/site/drronsun/clarion CLARION] <BR>
 
[https://sites.google.com/site/drronsun/clarion CLARION] <BR>
 +
[http://cram-system.org/cram CRAM]<BR>
 +
[https://www.iit.it/web/icog The iCog Initiative] <BR>
 +
[http://ccrg.cs.memphis.edu/tutorial/index.html LIDA] <BR>
 
[https://soar.eecs.umich.edu/ Soar] <BR>
 
[https://soar.eecs.umich.edu/ Soar] <BR>
  
Line 50: Line 69:
 
<P>
 
<P>
 
'''Lectures from [http://www.cognitiverobotics.net Cognitive Robotics] at [http://www.cognitiverobotics.net www.cognitiverobotics.net] '''<BR>
 
'''Lectures from [http://www.cognitiverobotics.net Cognitive Robotics] at [http://www.cognitiverobotics.net www.cognitiverobotics.net] '''<BR>
[http://www.vernon.eu/cognitive_robotics/CR25.pdf Lecture 25. Cognitive architectures: specification and operation; desirable characteristics; core cognitive abilities.]<BR>
+
[http://www.vernon.eu/cognitive_robotics/CR07-01.pdf Module 7, Lecture 1. Role and requirements; desirable characteristics; core cognitive abilities.]<BR>
[http://www.vernon.eu/cognitive_robotics/CR26.pdf Lecture 26. Cognitive architectures: Example cognitive architectures: Soar, ACT-R, Clarion, ICARUS, BBD, ISAC; The Common Model of Cognition.]<BR>
+
[http://www.vernon.eu/cognitive_robotics/CR07-02.pdf Module 7, Lecture 2. Cognitive architectures: Example cognitive architectures: Example cognitive architectures: Soar, ACT-R, CLARION, ICARUS, BBD, ISAC.]<BR>
[http://www.vernon.eu/cognitive_robotics/CR27.pdf Lecture 27. The CRAM cognitive architecture: overview of CRAM (Cognitive Robot Abstract Machine).]<BR>
+
[http://www.vernon.eu/cognitive_robotics/CR07-03.pdf Module 7, Lecture 3. The CRAM cognitive architecture: design principles; structure.]<BR>
 +
[http://www.vernon.eu/cognitive_robotics/CR07-04.pdf Module 7, Lecture 4. The CRAM cognitive architecture: operation.]<BR>
 
</P>
 
</P>
 
'''Lectures from [http://www.vernon.eu/ACS.htm Artificial Cognitive Systems] at [http://www.vernon.eu/ACS.htm www.vernon.eu/ACS.htm] '''<BR>
 
'''Lectures from [http://www.vernon.eu/ACS.htm Artificial Cognitive Systems] at [http://www.vernon.eu/ACS.htm www.vernon.eu/ACS.htm] '''<BR>
Line 63: Line 83:
 
=== Videos ===
 
=== Videos ===
  
 +
[[File:new.jpg]] [https://transair-bridge.org/workshop-2021/ Cognitive Architectures for Robot Agents]: a collection of 15 talks from leading experts <BR>
 
[https://www.youtube.com/watch?v=7s0CpRfyYp8 The real reason for brains] featuring Daniel Wolpert <BR>
 
[https://www.youtube.com/watch?v=7s0CpRfyYp8 The real reason for brains] featuring Daniel Wolpert <BR>
 
[https://youtu.be/2pNsfBj7XSA Open Research and the Soar Cognitive Architecture] featuring John Laird <BR>
 
[https://youtu.be/2pNsfBj7XSA Open Research and the Soar Cognitive Architecture] featuring John Laird <BR>
 
[https://youtu.be/0uJN-jRb7J4 Tutorial on the CRAM Cognitive Architecture] featuring Gayane Kazhoyan <BR>
 
[https://youtu.be/0uJN-jRb7J4 Tutorial on the CRAM Cognitive Architecture] featuring Gayane Kazhoyan <BR>
[https://youtu.be/L__g-oNuEQs EASE Milestone Robot Demo] <BR>
+
[[File:new.jpg]] [https://youtu.be/L__g-oNuEQs EASE Milestone Robot Demo] and a related IEEE Spectrum article: [https://spectrum.ieee.org/automaton/robotics/home-robots/hard-for-robots-autonomous-household-chores  "It’s (Still) Really Hard for Robots to Autonomously Do Household Chores"] <BR>
 
[https://www.youtube.com/watch?v=hrnoY6J8ddE&feature=youtu.be EASE Milestone Spoon Challenge] <BR>
 
[https://www.youtube.com/watch?v=hrnoY6J8ddE&feature=youtu.be EASE Milestone Spoon Challenge] <BR>
 
[http://www.vernon.eu/euCognition_Elizabeth_Spelke.mp4 Core Knowledge of Number and Geometry] featuring Elizabeth Spelke at [http://www.vernon.eu/euCognition/inaugural.htm the inaugural meeting] of [http://www.eucognition.org euCognition] in 2006<BR>
 
[http://www.vernon.eu/euCognition_Elizabeth_Spelke.mp4 Core Knowledge of Number and Geometry] featuring Elizabeth Spelke at [http://www.vernon.eu/euCognition/inaugural.htm the inaugural meeting] of [http://www.eucognition.org euCognition] in 2006<BR>
Line 103: Line 124:
 
[http://www.vernon.eu/euCognition/coevolution_white_paper.pdf CoEvolutionary Approaches in Cognitive Robotic Systems Design]<BR>
 
[http://www.vernon.eu/euCognition/coevolution_white_paper.pdf CoEvolutionary Approaches in Cognitive Robotic Systems Design]<BR>
 
[http://www.vernon.eu/euCognition/asm-whitepaper-final-060804.pdf Action Selection for Intelligent Systems]
 
[http://www.vernon.eu/euCognition/asm-whitepaper-final-060804.pdf Action Selection for Intelligent Systems]
 +
 +
=== Classic Papers ===
 +
 +
[[File:new.jpg]] [http://psychclassics.yorku.ca/Tolman/Maps/maps Cognitive Maps in Rats and Men] (if you are short of time, read the first paragraph and then the text at the end, after the last figure)
  
 
=== Journals ===
 
=== Journals ===
Line 115: Line 140:
 
[https://www.apress.com/us/book/9783319975498 Cognitive Architectures] by M. Ferreira, J. Sequeira, and R. Ventura (Eds.)
 
[https://www.apress.com/us/book/9783319975498 Cognitive Architectures] by M. Ferreira, J. Sequeira, and R. Ventura (Eds.)
  
=== Workshops and Colloquia ===
+
=== Research Centers and Labs ===
  
[http://ifrr.org/cognitive-robotics International Foundation for Robotics Research Colloquium on Cognitive Robotics], 8 October 2020;  the video proceedings are [https://www.youtube.com/watch?v=VKB9m4hOjlc&feature=youtu.be here] <BR>
+
[[File:new.jpg]] [https://www.ipa.fraunhofer.de/en/expertise/robot-and-assistive-systems/center_cognitive_robotics.html Center for Cognitive Robotics] Fraunhofer IPA, Germany <BR>
[http://www.aicworkshopseries.org/ AIC - Artificial Intelligence and Cognition International Workshop Series]
+
[[File:new.jpg]] [https://ruiliurobotics.weebly.com/ Cognitive Robotics and AI Lab] Kent University, USA <BR>
  
 
== Software Resources ==
 
== Software Resources ==
Line 133: Line 158:
  
 
== Datasets ==
 
== Datasets ==
[https://www.uni-bremen.de/en/csl/projects/current-projects/ease EASE - Everyday Activity Science and Engineering]
+
[https://www.uni-bremen.de/en/csl/projects/current-projects/ease EASE - Everyday Activity Science and Engineering] <BR>
 +
[[File:new.jpg]] [https://askforalfred.com/ ALFRED] Benchmark for Interpreting Grounded Instructions for Everyday Tasks
  
 
== Summer Schools ==
 
== Summer Schools ==
Line 151: Line 177:
 
[http://www.vernon.eu/euCognition/papers/ErlhagenBicho06.pdf The dynamic neural field approach to cognitive robotics]<BR>
 
[http://www.vernon.eu/euCognition/papers/ErlhagenBicho06.pdf The dynamic neural field approach to cognitive robotics]<BR>
 
[http://www.robotics-school.org/ Neuronal Dynamics Approaches to Cognitive Robotics]<BR>
 
[http://www.robotics-school.org/ Neuronal Dynamics Approaches to Cognitive Robotics]<BR>
 +
 +
=== Books ===
 +
 +
[[File:new.jpg]] [https://www.human-robot-interaction.org/ Human-Robot Interaction - An Introduction] An online textbook by C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and S. Šabanović
  
 
=== Model Curricula ===
 
=== Model Curricula ===
Line 159: Line 189:
 
=== Courses ===
 
=== Courses ===
  
[http://www.vernon.eu/cognitive_robotics/index.htm Introduction to Cognitive Robotics]<BR>
+
[http://www.vernon.eu/cognitive_robotics/index.htm www.cognitiverobotics.net] Introduction to Cognitive Robotics<BR>
 
[http://www.vernon.eu/ACS.htm Artificial Cognitive Systems]; teaching material for [http://vernon.eu/publications/14_Vernon_Artificial_Cognitive_Systems_Preamble.pdf Artificial Cognitive Systems - A Primer], [http://mitpress.mit.edu/books/artificial-cognitive-systems MIT Press], 2014; click '''[[Artificial Cognitive Systems|here]]''' for additional support material.<BR>
 
[http://www.vernon.eu/ACS.htm Artificial Cognitive Systems]; teaching material for [http://vernon.eu/publications/14_Vernon_Artificial_Cognitive_Systems_Preamble.pdf Artificial Cognitive Systems - A Primer], [http://mitpress.mit.edu/books/artificial-cognitive-systems MIT Press], 2014; click '''[[Artificial Cognitive Systems|here]]''' for additional support material.<BR>
 
[http://www.vernon.eu/ECVision/education/On-line_Cognitive_Vision_Course.htm Cognitive Computer Vision]<BR>
 
[http://www.vernon.eu/ECVision/education/On-line_Cognitive_Vision_Course.htm Cognitive Computer Vision]<BR>
 +
[https://www.theconstructsim.com/ The Construct] A Platform to Learn/Teach Robotics from Zero ... everything from robotics theory to ROS based robot programming <BR>
 
[http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-66j-computational-cognitive-science-fall-2004/lecture-notes/ MIT Open Courseware: Computational Cognitive Science]<BR>
 
[http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-66j-computational-cognitive-science-fall-2004/lecture-notes/ MIT Open Courseware: Computational Cognitive Science]<BR>
 
[https://cbmm.mit.edu/learning-hub MIT Center for Brains, Minds and Machines (CBMM) Science of Intelligence Learning Hub] <BR>
 
[https://cbmm.mit.edu/learning-hub MIT Center for Brains, Minds and Machines (CBMM) Science of Intelligence Learning Hub] <BR>

Revision as of 10:34, 22 December 2021

New.jpg signifies a recently added item

What is Cognition?

42 definitions of cognition ... it has proved difficult to define cognition: read Aaron Sloman's argument that it isn't worth trying (go to the end of the article)
A definition of a cognitive system from the Springer Reference Guide to Computer Vision
What is Cognition? in Current Biology 29, R603-R622, 2019
Cognitive Robotics, Sandini et al., in Encyclopedia of Robotics, M. Ang, O. Khatib, and B. Siciliano (Eds.), Springer, Berlin, Heidelberg, in press.

Robots

IEEE Guide to the World of Robots

Symposia and Workshops

New.jpg Virtual International Symposium on Cognitive Architecture (VISCA 2021), with videos and slides, including a session on robot cognitive architectures.
New.jpg Cognitive Architectures for Robot Agents, with videos. International Foundation for Robotics Research Colloquium on Cognitive Robotics, 8 October 2020; the video proceedings are here
AIC - Artificial Intelligence and Cognition International Workshop Series

Cognitive Architectures

Design Principles Articles

Design principles for biologically inspired cognitive robotics
Desiderata for Developmental Cognitive Architectures
A Standard Model of the Mind, now referred to as a Common Model of Cognition

Survey Articles

I. Kotseruba and J. Tsotsos (2020). 40 years of cognitive architectures: core cognitive abilities and practical applications
Companion website for 40 years of cognitive architectures: core cognitive abilities and practical applications
Biologically Inspired Cognitive Architectures Society (BICA) comparison of 25 cognitive architectures
B. Goertzl et al. (2010). A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures
Summaries of twenty cognitive architectures from D. Vernon, C. von Hofsten, and L. Fadiga. "A Roadmap for Cognitive Development in Humanoid Robots", Cognitive Systems Monographs (COSMOS), Vol. 11, Springer, 2010.

Individual Architecture Articles

MECA The Multipurpose Enhanced Cognitive Architecture (MECA)
MECA An Overview of the Multipurpose Enhanced Cognitive Architecture (MECA)
iCub The iCub Software Architecture: Evolution and Lessons Learned; not a cognitive architecture but relevant to the system architecture / software architecture aspects relevant to the implementation of a cognitive architecture.
iCub iCub-HRI: A Software Framework for Complex Human–Robot Interaction Scenarios on the iCub Humanoid Robot ibid.

Websites

Symbolic / Cognitivist
MusiCog

Emergent
SPA (Semantic Pointer Architecture) in Nengo

Hybrid
ACT-R
CLARION
CRAM
The iCog Initiative
LIDA
Soar

Presentations, Talks, Lectures

Yann LeCun Cake Analogy 2.0

Lectures from Cognitive Robotics at www.cognitiverobotics.net
Module 7, Lecture 1. Role and requirements; desirable characteristics; core cognitive abilities.
Module 7, Lecture 2. Cognitive architectures: Example cognitive architectures: Example cognitive architectures: Soar, ACT-R, CLARION, ICARUS, BBD, ISAC.
Module 7, Lecture 3. The CRAM cognitive architecture: design principles; structure.
Module 7, Lecture 4. The CRAM cognitive architecture: operation.

Lectures from Artificial Cognitive Systems at www.vernon.eu/ACS.htm
Lecture 7: Cognitive Architectures 1: What is a cognitive architecture? Desirable characteristics. Designing a cognitive architecture.
Lecture 8: Cognitive Architectures 2: Example cognitive architectures: Soar, ACT/R, ICARUS, Global Workspace, SASE, Darwin.
Lecture 9: Cognitive Architectures 3: Example cognitive architectures: ISAC.
Lecture 10: Cognitive Architectures 4: Example cognitive architectures: CLARION.
Lecture 11: Cognitive Architectures 5: Example cognitive architectures: CRAM. The Common Model of Cognition.

Videos

New.jpg Cognitive Architectures for Robot Agents: a collection of 15 talks from leading experts
The real reason for brains featuring Daniel Wolpert
Open Research and the Soar Cognitive Architecture featuring John Laird
Tutorial on the CRAM Cognitive Architecture featuring Gayane Kazhoyan
New.jpg EASE Milestone Robot Demo and a related IEEE Spectrum article: "It’s (Still) Really Hard for Robots to Autonomously Do Household Chores"
EASE Milestone Spoon Challenge
Core Knowledge of Number and Geometry featuring Elizabeth Spelke at the inaugural meeting of euCognition in 2006

Research

Research Challenges

Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks
The limits and potentials of deep learning for robotics
Building machines that learn and think like people
Controversies in Cognitive Systems Research
A First Draft Analysis of Some Meta-Requirements for Cognitive Systems in Robots

Knowledge-based Approaches

Ontology-based Approaches to Robot Autonomy
Socio-physical Models of Activities (SOMA)

Robot Platforms

openEASE Open Knowledge for AI-Enabled Robots
iCub open source cognitive humanoid robotic platform

Research Networks

TC-CORO: IEEE Technical Committee on Cognitive Robotics
EUCog: European Society for Cognitive Systems
BICA: Biologically Inspired Cognitive Architectures Society

White Papers

Computing, cognition and the future of knowing John Kelly, Senior Vice President, IBM Research and Solutions Portfolio.
Dynamic Field Theory (DFT): Applications in Cognitive Science and Robotics
Observing Human Behaviour in Image Sequences: The Video-Hermeneutic Challenge
Cognitive Ontologies: Mapping Structure and Function of the Brain from a Systemic View
Coordinating with the Future: the Anticipatory Nature of Representation
Communication and Distributed Control in Multi-Agent Systems: Preliminary Model of Micro-unmanned Aerial Vehicle (MAV) Swarms
Enactive Artificial Intelligence
CoEvolutionary Approaches in Cognitive Robotic Systems Design
Action Selection for Intelligent Systems

Classic Papers

New.jpg Cognitive Maps in Rats and Men (if you are short of time, read the first paragraph and then the text at the end, after the last figure)

Journals

IEEE Transactions on Cognitive and Developmental Systems
Cognitive Systems Research
Biologically Inspired Cognitive Architectures
Cognitive Computation and Systems

Books

Cognitive Architectures by M. Ferreira, J. Sequeira, and R. Ventura (Eds.)

Research Centers and Labs

New.jpg Center for Cognitive Robotics Fraunhofer IPA, Germany
New.jpg Cognitive Robotics and AI Lab Kent University, USA

Software Resources

EASE - Everyday Activity Science and Engineering: Open Knowledge for AI-Enabled Robots
CRAM: Cognitive Robot Abstract Machine
KnowRob: Knowledge Processing for Robots
The CLARION Cognitive Architecture Project
BECCA: Brain-Emulating Cognition and Control Architecture
AKIRA: C++ development framework to build cognitive architectures and complex artificial intelligent agents
AmonI: Artificial Models of Natural Intelligence]
CAST: The CoSy Architecture Schema Toolkit
YARP: Yet Another Robot Platform.
ROS: Robot Operating System

Datasets

EASE - Everyday Activity Science and Engineering
New.jpg ALFRED Benchmark for Interpreting Grounded Instructions for Everyday Tasks

Summer Schools

1st Summer School on Cognitive Robotics MIT 2017
2nd Summer School on Cognitive Robotics MIT 2018
3rd Summer School on Cognitive Robotics USC 2019

Teaching Resources

Tutorials

IEEE Robotics and Automation Magazine Tutorials
Tutorial on Embodiment
Control engineering of autonomous cognitive vehicles - a practical tutorial
The dynamic neural field approach to cognitive robotics
Neuronal Dynamics Approaches to Cognitive Robotics

Books

New.jpg Human-Robot Interaction - An Introduction An online textbook by C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and S. Šabanović

Model Curricula

euCognition Cognitive Systems Model Curriculum
University of Skövde MSc in Cognitive Systems Model Curriculum

Courses

www.cognitiverobotics.net Introduction to Cognitive Robotics
Artificial Cognitive Systems; teaching material for Artificial Cognitive Systems - A Primer, MIT Press, 2014; click here for additional support material.
Cognitive Computer Vision
The Construct A Platform to Learn/Teach Robotics from Zero ... everything from robotics theory to ROS based robot programming
MIT Open Courseware: Computational Cognitive Science
MIT Center for Brains, Minds and Machines (CBMM) Science of Intelligence Learning Hub
Introduction to Mobile Robotics University of Freiburg
Autonomous Mobile Robots ETH Zürich

Degrees in Cognitive Systems

The following is a sample of the Master-level degrees that are available in cognitive systems.

University of Skövde, Sweden Human-Robot Interaction (120 ECTS)
University of Birmingham Computational Neuroscience and Cognitive Robotics MSc
Universitat Pompeu Fabra, Spain Interdisciplinary Master in Cognitive Systems and Interactive Media (60 ECTS)
Technical University of Munich Robotics, Cognition, and Intelligence
University of Warwick M.Sc. in Cognitive Systems
University of Zurich Master of Science in Informatics: Field of study Multimodal and Cognitive Systems
Jacobs University, Germany Cognitive Systems and Processes

Research Networks and Societies

TC-CORO: IEEE Technical Committee on Cognitive Robotics
euCognition: European Network for the Advancement of Artificial Cognitive Systems. This network was the first in a series of three networks, culminating in EUCog below.
EUCog: European Society for Cognitive Systems
BICA: Biologically Inspired Cognitive Architectures Society
ESSCS: European Society for the Study of Cognitive Systems