Difference between revisions of "Data Structures and Algorithms for Engineers"

From David Vernon's Wiki
Jump to: navigation, search
Line 73: Line 73:
 
* Stacks
 
* Stacks
 
* Queues
 
* Queues
* Sorting
+
* List Sorting
* Trees
+
* ADT Trees
 
* Heaps
 
* Heaps
 
* Graphs
 
* Graphs
Line 80: Line 80:
 
* Software Design
 
* Software Design
 
* ''Operating Systems''
 
* ''Operating Systems''
* ''Secondary Storage and File Management''
+
* ''Secondary Storage / File Management''
 
* '''Software documentation'''
 
* '''Software documentation'''
 
* '''Software development lifecycle'''
 
* '''Software development lifecycle'''
Line 90: Line 90:
  
  
<span style="color:#AB0000">Introduction and motivation</span><BR>
+
<span style="color:#AB0000">Introduction</span><BR>
 
* History of computer science
 
* History of computer science
 
* Goals of the course
 
* Goals of the course
Line 97: Line 97:
 
* '''Software development platform and tools'''
 
* '''Software development platform and tools'''
  
<span style="color:#AB0000">Algorithmic strategies</span><BR>
+
<span style="color:#AB0000">Fundamental Algorithmic Strategies</span><BR>
 
* Definition of an algorithm
 
* Definition of an algorithm
 
* Algorithmic analysis and complexity
 
* Algorithmic analysis and complexity
Line 103: Line 103:
 
* Brute force, divide and conquer, branch and bound, dynamic programming, greedy algorithms, recursion, approximation,  heuristics and heuristic algorithms, probabilistic algorithms
 
* Brute force, divide and conquer, branch and bound, dynamic programming, greedy algorithms, recursion, approximation,  heuristics and heuristic algorithms, probabilistic algorithms
  
<span style="color:#AB0000">Algorithmic representation and analysis</span><BR>
+
<span style="color:#AB0000">Algorithmic Representation and Analysis</span><BR>
 
* Modelling software
 
* Modelling software
 
* Representation, communication, and analysis of algorithms
 
* Representation, communication, and analysis of algorithms
Line 115: Line 115:
 
* Analysis
 
* Analysis
  
<span style="color:#AB0000">Correctness</span><BR>
+
<span style="color:#AB0000">Correctness Analysis</span><BR>
 
* Types of software defects
 
* Types of software defects
 
* Code module design
 
* Code module design
Line 128: Line 128:
 
* '''Software quality assurance metrics'''
 
* '''Software quality assurance metrics'''
  
<span style="color:#AB0000">Algorithmic Representation and Analysis</span><BR>
+
<span style="color:#AB0000">Measurement</span><BR>
 
* Complexity analysis
 
* Complexity analysis
 
* Big O notation
 
* Big O notation

Revision as of 02:00, 24 December 2016

|CARNEGIE MELLON UNIVERSITY IN RWANDA|


04-630
Data Structures and Algorithms for Engineers

Course discipline: TBD

Core

Units: 12

Lecture/Lab/Rep hours/week: 4 hours lectures/week, 1.5 hours labs/week (two sessions), 1 hour recitation/week (two sessions)

Semester: Spring

Pre-requisites: programming skills

Students are expected to be familiar with programming in at least one programming language. Formal programming language training is not required. Students may not have any formal background in algorithms, data structures, analysis, or detailed design techniques and methods.

Course description:

Original description in 04-630 Computer Science (Principles) for Practicing Engineers:

Many organizations today are incorporating computer hardware and software into the products that they design and build. Most of these organizations' primary competencies are not computer science or software engineering, but rather they find that automation makes their products smarter, more capable, and more appealing in the market place. Because deep domain knowledge is needed to build these products, these organizations often hire engineers from traditional engineering disciplines to design and build the product platform, in many cases requiring them to write software to make the product actually work. These are capable engineers from many disciplines other than software engineering and unfortunately they usually learn software engineering on the job. This process typically involves considerable trial and error and often results in poorly designed and documented systems, defect laden software, bloated product development costs, unmaintainable software, and missed opportunities to leverage software development investments.

In addition to developing mere functionality, some application domains are often highly constrained and unforgiving in their quality attribute needs such as performance, safety, and availability. These systems intimately depend upon software to provide these capabilities in addition to basic functionality. Designing software intensive systems with these properties in a cost-effective way requires first-class computer science and software engineering expertise. While many practicing engineers often have many years of industrial experience writing software applications, many lack a formal background in computer science principles. These engineers may have had a few courses or technical training in specific computer languages or technologies, but in general they often lack formal training in algorithms, computing theory, data structures, and design among other key topics. The result is that many of these engineers are not fully realizing their potential as software engineers. This course is designed to bridge these gaps in formal computer science training.


Suggested alternative


Learning objectives:

Original description in 04-630 Computer Science (Principles) for Practicing Engineers:

The primary objective of the course is to provide engineers without formal training in computer science, a solid background in the key principles of computer science. The key purpose of this course is to complement the experience that engineers may already have in writing software with formal computer science underpinnings, making those engineers more capable in developing software intensive systems. Specific learning objectives include:

  • Preparing students for immediate competency so that course material can be directly applied in real world situations.
  • Improving the student's ability to recognize and analyze critical computational problems in the course of their work, generate alternative solutions to problems, and judge among them.
  • Enabling students to better understand, analyze, and characterize those factors that influence algorithmic computational performance and memory consumption.
  • Increasing student's awareness and understanding of detailed code structures and their underlying strengths and weaknesses.
  • Improve the student's ability to performed detailed, code-level design and document the design in an understandable way.


Suggested alternative

Based on the concept of abstract data types, this course provides an intensive treatment of the key elements of algorithms and data-structures, beginning with the fundamentals of searching, sorting, lists, stacks, and queues, but quickly building to cover more advanced topics, including trees, graphs, and algorithmic strategies. It also covers the analysis of the performance and tractability of algorithms. A key focus of the course is on effective implementation and good design principles. It begins by considering the main phases of the software development lifecycle, from requirements elicitation, to computational modelling, system specification, software design, implementation, and software quality assurance, including various forms of testing, verification, and validation.

Outcomes:

After completing this course, students should be able to:

  • Recognize and analyze critical computational problems in the course of their work, generate alternative solutions to problems, and assess their relative merits;
  • Understand, analyze, and characterize those factors that influence algorithmic computational performance and memory consumption;
  • Design, implement, and document effective efficient data structures & algorithms for a variety of real-world problems;
  • Understand detailed software structures and their underlying strengths and weaknesses.

Content details:

(See the Lecture Plan for information on course delivery, including lectures, labs, and exercises.)

Note: topics suggested for deprecation are set in italics; new topics are set in boldface.


The course will cover the following topics (yet to be reordered):

  • Introduction & motivation
  • Fundamental Algorithmic Strategies
  • Algorithmic Representation & Analysis
  • Correctness Analysis
  • Measurement
  • ADT Introduction and Design
  • Lists
  • Stacks
  • Queues
  • List Sorting
  • ADT Trees
  • Heaps
  • Graphs
  • Hashing
  • Software Design
  • Operating Systems
  • Secondary Storage / File Management
  • Software documentation
  • Software development lifecycle
  • Software specification and design
  • Software implementation best practice
  • Component based software engineering

The detailed content for each of these topics follows.


Introduction

  • History of computer science
  • Goals of the course
  • Topic areas
  • Course mechanics
  • Software development platform and tools

Fundamental Algorithmic Strategies

  • Definition of an algorithm
  • Algorithmic analysis and complexity
  • Classes of algorithms
  • Brute force, divide and conquer, branch and bound, dynamic programming, greedy algorithms, recursion, approximation, heuristics and heuristic algorithms, probabilistic algorithms

Algorithmic Representation and Analysis

  • Modelling software
  • Representation, communication, and analysis of algorithms
  • Relational modelling
  • State modelling
  • Pseudo code
  • Flow charts
  • Finite state machines
  • UML
  • Predicate logic
  • Analysis

Correctness Analysis

  • Types of software defects
  • Code module design
  • Syntactic, semantic, logical defects
  • (Semi-)formal verification: partial vs. total correctness
  • Invariant assertion method
  • Simple proof strategies: by contradiction, counterexample, induction
  • Dynamic testing: unit tests, test harness, stubs, drivers, integration testing, regression testing.
  • Static tests: reviews, walkthroughs, inspections, reviewing algorithms and software
  • Pair programming
  • Verification and validation strategies
  • Software quality assurance metrics

Measurement

  • Complexity analysis
  • Big O notation
  • Recursion: runtime memory implications.
  • Recursive vs. iterative solutions


ADT Introduction and Design

  • Vector example exercise
  • History of abstraction, ADT, Dave Parnas
  • Information hiding
  • Types and typing
  • Encapsulation
  • Efficiency
  • Correctness
  • Checks for pre-conditions and post-conditions
  • Design practices


Lists

  • Basic operations
  • Implementation with arrays and linked lists in pseudo-code
  • Singly linked lists
  • Doubly linked lists
  • Performance considerations

Stacks

  • Stack (LIFO): push, pop, peek, size, numItems operations
  • Array implementation in pseudo-code (directly and array of pointers to data)
  • Stack applications, including evaluation of infix, prefix, and postfix expressions

Queues

  • Queue (FIFO): enqueue, dequeue, peek, size, numItems operations
  • Array implementation in pseudo-code (directly and array of pointers to data)
  • Linked list implementation in pseudo-code
  • Circular queues
  • Performance considerations
  • Deque


























Faculty:

David Vernon

Delivery:

Face-to-face.

Students assessment:

This course includes several hands-on programming and analysis assignments. Students will program mainly in C/C++. The programming assignments include individual assignments and a team capstone project in teams of 2-3 people. In addition to programming assignments, students will be assigned readings to support the lecture material.

Marks will be awarded as follows.

Individual Assignments 50% Final Capstone Project 40% (The capstone project will be completed in 2-3 person teams). Instructor Judgement 10% (We will use time tracking and observation to determine this part of the grade).

Software requirements:

We will use Microsoft Visual C++ Express compiler, version 10.0 (also known as Visual C++ 2010) and CMake running on Windows 7 64 bit.

A complete software installation guide will be provided in due course.

Course texts:

Algorithmics: The Spirit of Computing, Third Edition, David Harel and Yishai Feldman.

Data Structures and Algorithms, Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft.

A selection of papers and readings will be provided to complement these required textbooks.


Acknowledgments:

The syllabus for this course is based primarily on the following course.

  • 04-630 Computer Science Principles for Practicing Engineers given by Mel Rosso-Llopart and Anthony J. Lattanze at Carnegie Mellon University.

Additional topics and teaching material have been taken from the following course.

  • CS-CO-412 Algorithms and Data Structures given by David Vernon at the Innopolis University.