Difference between revisions of "Cognitive Robotics Resources"
(→Survey Articles) |
(→Survey Articles) |
||
Line 21: | Line 21: | ||
[http://bicasociety.org/cogarch/architectures.htm Biologically Inspired Cognitive Architectures Society (BICA) comparison of 25 cognitive architectures] <BR> | [http://bicasociety.org/cogarch/architectures.htm Biologically Inspired Cognitive Architectures Society (BICA) comparison of 25 cognitive architectures] <BR> | ||
[http://www.sciencedirect.com/science/article/pii/S0925231210003498 B. Goertzl et al. (2010). A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures] <BR> | [http://www.sciencedirect.com/science/article/pii/S0925231210003498 B. Goertzl et al. (2010). A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures] <BR> | ||
+ | [http://www.vernon.eu/publications/10_Vernon_vonHofsten_Fadiga_COSMOS_Cognitive_Architectures.pdf Summaries of twenty cognitive architectures] from D. Vernon, C. von Hofsten, and L. Fadiga. "A Roadmap for Cognitive Development in Humanoid Robots", Cognitive Systems Monographs (COSMOS), Vol. 11, Springer, 2010. | ||
=== Individual Architecture Articles === | === Individual Architecture Articles === |
Revision as of 11:03, 8 November 2020
Contents
Definitions of Cognition
42 definitions of cognition ... it has proved difficult to define cognition: read Aaron Sloman's argument that it isn't worth trying (go to the end of the article)
A definition of a cognitive system from the Springer Reference Guide to Computer Vision
Robots
IEEE Guide to the World of Robots
Cognitive Architectures
Design Principles Articles
Design principles for biologically inspired cognitive robotics
Desiderata for Developmental Cognitive Architectures
A Standard Model of the Mind, now referred to as a Common Model of Cognition
Survey Articles
I. Kotseruba and J. Tsotsos (2020). 40 years of cognitive architectures: core cognitive abilities and practical applications
Companion website for 40 years of cognitive architectures: core cognitive abilities and practical applications
Biologically Inspired Cognitive Architectures Society (BICA) comparison of 25 cognitive architectures
B. Goertzl et al. (2010). A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures
Summaries of twenty cognitive architectures from D. Vernon, C. von Hofsten, and L. Fadiga. "A Roadmap for Cognitive Development in Humanoid Robots", Cognitive Systems Monographs (COSMOS), Vol. 11, Springer, 2010.
Individual Architecture Articles
Websites
Presentations, Talks, Lectures
Videos
Tutorial on the CRAM Cognitive Architecture by Gayane Kazhoyan
Open Research and the Soar Cognitive Architecture by John Laird
EASE Milestone Robot Demo
EASE Milestone Spoon Challenge
Research
Research Challenges
Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks
The limits and potentials of deep learning for robotics
Building machines that learn and think like people
Controversies in Cognitive Systems Research
A First Draft Analysis of Some Meta-Requirements for Cognitive Systems in Robots
Knowledge-based Approaches
Ontology-based Approaches to Robot Autonomy
Socio-physical Models of Activities (SOMA)
Robot Platforms
openEASE Open Knowledge for AI-Enabled Robots
iCub open source cognitive humanoid robotic platform
Research Networks
TC-CORO: IEEE Technical Committee on Cognitive Robotics
EUCog: European Society for Cognitive Systems
BICA: Biologically Inspired Cognitive Architectures Society
White Papers
Computing, cognition and the future of knowing John Kelly, Senior Vice President, IBM Research and Solutions Portfolio.
Dynamic Field Theory (DFT): Applications in Cognitive Science and Robotics
Observing Human Behaviour in Image Sequences: The Video-Hermeneutic Challenge
Cognitive Ontologies: Mapping Structure and Function of the Brain from a Systemic View
Coordinating with the Future: the Anticipatory Nature of Representation
Communication and Distributed Control in Multi-Agent Systems: Preliminary Model of Micro-unmanned Aerial Vehicle (MAV) Swarms
Enactive Artificial Intelligence
CoEvolutionary Approaches in Cognitive Robotic Systems Design
Action Selection for Intelligent Systems
Journals
IEEE Transactions on Cognitive and Developmental Systems
Cognitive Systems Research
Biologically Inspired Cognitive Architectures
Cognitive Computation and Systems
Books
Cognitive Architectures by M. Ferreira, J. Sequeira, and R. Ventura (Eds.)
Workshops and Colloquia
International Foundation for Robotics Research Colloquium on Cognitive Robotics, 8 October 2020; the video proceedings are here
AIC - Artificial Intelligence and Cognition International Workshop Series
Software Resources
EASE - Everyday Activity Science and Engineering: Open Knowledge for AI-Enabled Robots
CRAM: Cognitive Robot Abstract Machine
KnowRob: Knowledge Processing for Robots
The CLARION Cognitive Architecture Project
BECCA: Brain-Emulating Cognition and Control Architecture
AKIRA: C++ development framework to build cognitive architectures and complex artificial intelligent agents
AmonI: Artificial Models of Natural Intelligence]
CAST: The CoSy Architecture Schema Toolkit
YARP: Yet Another Robot Platform.
ROS: Robot Operating System
Datasets
EASE - Everyday Activity Science and Engineering
Summer Schools
1st Summer School on Cognitive Robotics MIT 2017
2nd Summer School on Cognitive Robotics MIT 2018
3rd Summer School on Cognitive Robotics USC 2019
Teaching Resources
Videos
Daniel Wolpert TED Talk on the real reason we have brains
Elizabeth Spelke's talk on Core Knowledge of Number and Geometry at the inaugural meeting of euCognition in 2006
Trailer for The Age of Robots from Massimo Brega
Tutorials
IEEE Robotics and Automation Magazine Tutorials
Tutorial on Embodiment
Control engineering of autonomous cognitive vehicles - a practical tutorial
The dynamic neural field approach to cognitive robotics
Neuronal Dynamics Approaches to Cognitive Robotics
Model Curricula
euCognition Cognitive Systems Model Curriculum
University of Skövde MSc in Cognitive Systems Model Curriculum
Courses
Introduction to Cognitive Robotics
Artificial Cognitive Systems; teaching material for Artificial Cognitive Systems - A Primer, MIT Press, 2014; click here for additional support material.
Cognitive Computer Vision
MIT Open Courseware: Computational Cognitive Science
MIT Center for Brains, Minds and Machines (CBMM) Science of Intelligence Learning Hub
Introduction to Mobile Robotics University of Freiburg
Autonomous Mobile Robots ETH Zürich
Degrees in Cognitive Systems
The following is a sample of the Master-level degrees that are available in cognitive systems.
University of Skövde, Sweden Human-Robot Interaction (120 ECTS)
University of Birmingham Computational Neuroscience and Cognitive Robotics MSc
Universitat Pompeu Fabra, Spain Interdisciplinary Master in Cognitive Systems and Interactive Media (60 ECTS)
Technical University of Munich Robotics, Cognition, and Intelligence
University of Warwick M.Sc. in Cognitive Systems
University of Zurich Master of Science in Informatics: Field of study Multimodal and Cognitive Systems
Jacobs University, Germany Cognitive Systems and Processes
Research Networks and Societies
TC-CORO: IEEE Technical Committee on Cognitive Robotics
euCognition: European Network for the Advancement of Artificial Cognitive Systems. This network was the first in a series of three networks, culminating in EUCog below.
EUCog: European Society for Cognitive Systems
BICA: Biologically Inspired Cognitive Architectures Society
ESSCS: European Society for the Study of Cognitive Systems